چکیده :
در این پایان نامه (پژوهش) به مطالعه ارتباط بین منحنی مغناطیس شوندگی هسته ترانسفور ماتور و ناپایداریهای هارمونیکی ناشی از آن می پردازیم .سپس انواع هارمونیک های ولتاژ و جریان و اثرات آنها را بر روی سیستم های قدرت ، در حالات مختلف مورد بررسی قرار می دهیم0 در قسمت بعد به بررسی چگونگی حذف هارمونیک ها در ترانسفور ماتور های قدرت با استفاده از اتصالات ستاره ومثلث سیم پیچی ها می پردازیم .و در نها یت نیز جبرانکننده ها ی استاتیک و فیلتر ها را به منظور حذف هارمونیک های سیستم قدرت مورد مطالعه قرار می دهیم.
کلمات کلیدی :
ناپایداری هارمونیکی ، منحنی مغناطیس شوندگی ، فیلترها ، سیستم قدرت ، هارمونیک ولتاژ و جریان ، جبرانساز استا تیک
این پروژه شامل پنج فصل است که : فصل اول :در موردشناخت ترانسفورماتور و آشنایی کلی با اصول اولیه ترانسفورماتور اصول کار و مشخصات اسمی ترانسفورماتور و چگونگی تعیین تلفات در ترانسفورماتور و ساختمان ووسایل حفاظتی بکار رفته در ترانسفورماتور بحث می کند . فصل دوم :در مورد رابطه بین B – H و منحنی مغناطیس شوندگی تلفات پس ماند هسته جریان تحریکی در ترانسفورماتورها و ناپایداری هارمونیکی مرتبط با هسته و چگونگی ایجاد ناپایداری کنترل ناپایداری و آنالیز هارمونیکی جریان مغناطیس کننده و عناصر اشباع را مورد بررسی قرار می دهد . فصل سوم :در این فصل با هارمونیکهای جریان ولتاژ اثرات آنها و هارمونیکهای جریان در یک سیستم خازن و یک سیستم پس از نصب خازن و عیوب هارمونیکهای جریان و هارمونیکهای ولتاژ و چگونگی تعیین آنها را مورد بررسی قرار می دهد . فصل چهارم : دراین فصل به بررسی عملکرد هارمونیک در ترانسفورماتور می پردازیم و انواع آن در اتصالات ترانس را مورد بررسی قرار می دهیم و هارمونیک سوم در ترانسفورماتور و ایجاد سیم پیچ ثالثیه یا پایدارکننده برای حذف هارمونیک و همچنین تلفات هارمونیکها در ترانسفورماتور می پردازیم .
فصل پنجم:در این فصل به منظورحذف هارمونیکهاواثرات آنها در سیستمهای قدرت،به مطالعه جبرانکننده های استاتیک می پردازیم. امروزه در سیستم های قدرت مدرت جبران کننده های استاتیک بعنوان کامل ترین جبران کننده ها مطرح هستند.
مقدمه 1
فصل اول: شناخت ترانسفورماتور 6
1-1 مقدمه 7
2-1 تعریف ترانسفورماتور 7
3-1 اصول اولیه 7
4-1 القاء متقابل 7
5-1 اصول کار ترانسفورماتور 9
6-1 مشخصات اسمی ترانسفورماتور 12
1-6-1 قدرت اسمی 12
2-6-1 ولتاژ اسمی اولیه 12
3-6-1 جریان اسمی 12
4-6-1 فرکانس اسمی 12
5-6-1 نسبت تبدیل اسمی 13
7-1 تعیین تلفات در ترانسفورماتورها 13
1-7-1 تلفات آهنی 13
2-7-1 تلفات فوکو در هسته 13
3-7-1 تلفات هیسترزیس 14
4-7-1 مقدار تلفات هیسترزیس 16
5-7-1 تلفات مس 16
8-1 ساختمان ترانسفورماتور 17
1-8-1 مدار مغناطیسی (هسته) 17
2-8-1 مدار الکتریکی (سیم پیچها) 17
1-2-8-1 تپ چنجر 18
2-2-8-1 انواع تپ چنجر 18
3-8-1 مخزن روغن 19
مخزن انبساط 19
4-8-1 مواد عایق 19
الف - کاغذهای عایق 20
ب - روغن عایق 20
ج - بوشینکهای عایق 20
5-8-1 وسایل حفاظتی 21
الف – رله بوخهلتس 21
ب – رله کنترل درجه حرارت سیم پیچ 22
ج – ظرفیت سیلی گاژل 23
9-1 جرقه گیر 24
1-10 پیچ ارت 24
فصل دوم: بررسی بین منحنی B-H و آنالیز هارمونیکی جریان مغناطیس کننده 26
1-2 مقدمه 27
2-2 منحنی مغناطیس شوندگی 27
3-2 پس ماند (هیسترزیس) 30
4-2 تلفات پس ماند (تلفات هیسترزیس) 32
5-2 تلفات هسته 32
6-2 جریان تحریک 33
7-2 پدیده تحریک در ترانسفورماتورها 33
8-2 تعریف و مفهوم هارمونیک ها 36
1-8-2 هارمونیک ها 36
2-8-2 هارمونیک های میانی 37
9-2 ناپایداری هارمونیکی مرتبط با هسته ترانس در سیستمهای AC-DC 37
10-2 واکنشهای فرکانسی AC-DC 37
11-2 چگونگی ایجاد ناپایداری 39
12-2 تحلیل ناپایداری 40
13-2 کنترل ناپایداری 41
14-2 جریان مغناطیس کننده ترانسفورماتور 42
1-14-2 عناصر قابل اشباع 42
2-14-2 وسایل فرومغناطیسی 43
فصل سوم : تأثیر هارمونیکهای جریان ولتاژ روی ترانسفورماتورهای قدرت 46
1-3 مقدمه 47
2-3 مروری بر تعاریف اساسی 47
3-3 اعوجاج هارمونیکها در نمونه هایی از شبکه 49
4-3 اثرات هارمونیک ها 51
5-3 نقش ترمیم در سیستمهای قدرت با استفاده از اثر خازنها 52
1-5-3 توزیع هارمونیکهای جریان در یک سیستم قدرت بدون خازن 52
2-5-3 توزیع هارمونیکهای جریان در یک سیستم پس از نصب خازن 52
6-3 رفتار ترانسفورماتور در اثر هارمونیکهای جریان 54
7-3 عیوب هارمونیکها در ترانسفورماتور 54
1-7-3 هارمونیکهای جریان 54
1) اثر بر تلفات اهمی 54
2) تداخل الکترومغناطیسی با مدارهای مخابراتی 54
3) تأثیر بر روی تلفات هسته 55
2-7-3 هارمونیک های ولتاژ 55
1) تنش ولتاژ روی عایق 55
2) تداخل الکترواستاتیکی در مدارهای مخابراتی 55
3) ولتاژ تشدید بزرگ 56
8-3 حذف هارمونیکها 56
1) چگالی شار کمتر 56
2) نوع اتصال 57
3) اتصال مثلث سیم پیچی اولیه یا ثانویه 57
4) استفاده از سیم پیچ سومین 57
5) ترانسفورماتور ستاره – مثلث زمین 57
9-3 طراحی ترانسفورماتور برای سازگاری با هارمونیک ها 58
10-3 چگونگی تعیین هارمونیکها 59
11-3 اثرات هارمونیکهای جریان مرتبه بالا روی ترانسفورماتور 59
12-3 مفاهیم تئوری 60
1-12-3 مدل سازی 60
13- 3 نتایج عمل 61
14-3 راه حل ها 62
15-3 نتیجه گیری نهایی 62
فصل چهارم: بررسی عملکرد هارمونیک ها در ترانسفورماتورهای قدرت 63
1-4 مقدمه 64
2-4- پدیده هارمونیک در ترانسفورماتور سه فاز 64
3-4 اتصال ستاره 68
1-3-4 ترانسفورماتورهای با مدار مغناطیسی مجزا و مستقل 68
2-3-4 ترانسفورماتورها با مدار مغناطیسی پیوسته یا تزویج شده 71
4-4 اتصال Yy ستاره با نقطه خنثی 72
5-4 اتصال Dy 72
6-4 اتصال yd 73
7-4 اتصال Dd 74
8-4 هارمونیک های سوم در عمل ترانسفورماتور سه فاز 74
9-4 سیم پیچ ثالثیه یا پایدارکننده 76
10-4 تلفات هارمونیک در ترانسفورماتور 77
1-10-4 تلفات جریان گردابی در هادی های ترانسفورماتور 77
2-10-4 تلفات هیسترزیس هسته 77
3-10-4 تلفات جریان گردابی در هسته 78
4-10-4 کاهش ظرفیت ترانسفورماتور 79
فصل پنجم: جبران کننده های استاتیک 80
1-5 مقدمه 81
2-5 راکتور کنترل شده با تریستور TCR 81
1-2-5 ترکیب TCR و خازنهای ثابت موازی 87
3-5 راکتور اشباع شدهSCR 88
1-3-5 شیب مشخصه ولتاژ 89
نتیجه گیری 91
منابع و مآخذ 92
چکیده به زبان انگلیسی 94
مقدمه
امروزه ولتاژ DC فشار قوی برای انتقال حجم زیادی از قدرت بکار گرفته می شود زیرا نسبت به سیستم انتقال AC رایج ، دارای مزایای زیر است :
الف ) فقط ظرفیت گرمایی خط و تجهیزات آن بر حد پایداری حاکمند .
ب ) هزینه انتقال کمتر است زیرا هادی های کمتری مصرف می شود و به دکلهای کوچکتری احتیاج است.
ج) هادی کوچکتری می توان بکار برد زیرا دیگر اثر پوستی برای جریان ، وجود ندارد.
د ) دو سیستم قدرت AC با فرکانسهای کار مختلف را می توان به یکدیگر اتصال داد و دلیل آن طبیعت غیر سنکرون خط DC است.
ه) آشکارسازی اتصال کوتواه و رفع آن ، سریع تر انجام می گیرد و پایداری کلی سیستم را می توان تا حد زیادی بهبود بخشید زیرا عبور توان را می توان به شکل الکتریکی کنترل کرد .
و ) برای انتقال با کابل (زیرزمینی ) بسیار ایده آل است زیرا توان رآکتیو شارژ دیگر وجود ندارد ؛ اما هزینه اضافی که برای تجهیزات تبدیل AC به DC و بالعکس لازم است انتقال DC در سطوح قدرت پایین و برای فواصل کوتاه را غیر اقتصادی می کند.
با در دسترس قرار گرفتن SCR های پر قدرت ، لامپهای قوس جیوه برای انتقال DC ، جای خود را به کنورترهای نیمه هادی می دهند.
شکل 1-1 (الف ) ، دیاگرام شمایی یک سیستم انتقال دو قطبی DC را نشان می دهد که در آن سیستمهای قدرت AC 1و 2 به وسیله یک رابط DC به هم اتصال داده شده اند پل 1 به عنوان یکسو کننده و پل 2 ، به عنوان اینورتر عمل می کند و زوایای آتش دو پل برای کار در این شرایط به خوبی تنظیم شده اند در روی هر شاخه هر پل ، تعدادی SCR به صورت ترکیب سری – موازی بکار گرفته شده تا ظرفیت جریان و ولتاژ زیادی به دست آید مدارهای متعادل کننده ولتاژ و جریان ، و نیز ضربه گیرهای (snubbers) لازم ، با SCR ها همراه شده اند .
برای کاهش ضریب تموج در خروجی ، و در نتیجه کاهش ظرفیت صافی ، در طرفین رشته رابط DC از دو مدار شش پالس استفاده می شود اولی با ترانسفرمر ورودی که اتصال ستاره – ستاره دارد و دومی با یک ترانسفرمر ورودی که اتصال ستاره – مثلث دارد این منجر به کار در یک وضعیت 12 پالس شده و در نتیجه اعوجاج در جریان ورودی را کاهش می دهد .
- بیان مسأله اساسی تحقیق:
گسترش و رشد روز افزون مصرف انرژی الکتریکی و رشد بارهای حساس از جمله دستگاههای الکترونیکی و حساسیت زیاد این ادوات به انواع اغتشاشات توان آنها را مواجه با پدیدههای مختلفی نموده است. واژه کیفیت توان به عنوان یک مفهوم فراگیر برای انواع مختلف اغتشاشات کیفیت توان شبکه بکار می رود. در راستای طرح و توسعه سیستمهای الکترونیک قدرت و بالابردن کیفیت توان، مؤسسات تحقیقات توان الکتریکی، ادوات Custom Powerرا در شبکههای توزیع معرفی کردهاند که این تجهیزات درصدد بهبود کیفیت توان در شبکه توزیع میباشند. یک نوع از این تجهیزات، بازیاب دینامیکی ولتاژ (DVR) میباشد که براساس اصول کار مبدل منبع ولتاژVSC طراحی شده است و با تزریق ولتاژ به سیستم سبب اصلاح اغتشاشات شبکه توزیع میشود.
پروژه پایانی مهندسی برق اثر اضافه ولتاژ های ناشی از صاعقه روی خطوط انتقال87 صفحه فایل ورد قلیب ویرایش
پروژه اضافه ولتاژ در شبکه های توزیع نیرو167 ضفحه ورد با قیمتی دانشجویی