کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

پایان نامه طراحی و آنالیز استاتیکی و دینامیکی مکانیزم های تنسگریتی

اختصاصی از کوشا فایل پایان نامه طراحی و آنالیز استاتیکی و دینامیکی مکانیزم های تنسگریتی دانلود با لینک مستقیم و پر سرعت .

پایان نامه طراحی و آنالیز استاتیکی و دینامیکی مکانیزم های تنسگریتی


پایان نامه طراحی و آنالیز استاتیکی و دینامیکی مکانیزم های تنسگریتی

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:104

پایان نامه کارشناسی ارشد در رشته مکانیک (گرایش طراحی کاربردی)

فهرست مطالب:

1-مقدمه
1-1 معرفی ساختارهای تنسگریتی:    1
1-2 کاربرد ساختارهای تنسگریتی در رباتیک:    3
1-3 نحوه¬ی تغییر شکل در ساختار مکانیزمهای تنسگریتی:    3
1-4 نمونه¬هایی از مکانیزم¬های تنسگریتی:    4
1-5 تحقیقات صورت پذیرفته در زمینه¬ی ربات¬های تنسگریتی در دانشگاه شیراز:    13
1-6 طرح کلی رئوس مطالب:    14
2-آنالیز استاتیکی، سفتی و دینامیکی یک مکانیزم تنسگریتی فضایی جدید
2-1 مقدمه:    16
2-2 سینماتیک مکانیزم:    17
2-2-1 معرفی مکانیزم:    17
2-2-2 آنالیز موقعیت:    19
2-2-3 آنالیز سرعت و شتاب:    21
2-3 آنالیز استاتیکی و سفتی مکانیزم:    23
2-3-1 آنالیز استاتیکی:    23
2-3-2 آنالیز سفتی:    24
2-4 دینامیک مکانیزم:    28
2-4-1 نیروهای تعمیم یافته:    29
2-4-2 معادلات حرکت:    30
2-4-3 شبیه سازی و نتایج:    31
3-آنالیز استاتیکی و دینامیکی مکانیزم تنسگریتی 3-UPS
3-1 مقدمه:    35
3-2 معرفی مکانیزم:    36
3-3 سینماتیک مکانیزم:    38
3-3-1 سینماتیک صفحه¬ی متحرک:    38
3-3-2 سینماتیک بازوهای مکانیزم :    39
3-4 محاسبه¬ی عبارت¬های  ،   و  :    43
3-5 آنالیز استاتیکی:    45
3-5-1 نیروی تعمیم یافته¬ی فنرها:    45
3-5-2 نیروهای تعمیم یافته¬ی گرانشی:    46
3-5-3 نیروی تعمیم یافته¬ی ناشی از محرک¬های هیدرولیکی:    46
3-5-4 معادلات تعادل استاتیکی:    47
3-6 استخراج معادلات دیفرانسیل سیستم:    48
3-7 شبیه سازی حرکت مکانیزم:    50
4- شبیه سازی و ساخت  مکانیزم تنسگریتی 3-PUS
4-1 مقدمه:    54
4-2 معرفی مکانیزم:    55
4-3 سینماتیک مکانیزم:    59
4-3-1سینماتیک معکوس:    59
4-3-2 آنالیز سرعت:    61
4-4 آنالیز استاتیکی مکانیزم:    62
4-4-1 مختصات مستقل و وابسته:    62
4-4-2نیروهای تعمیم یافته¬ی فنرهای جانبی:    65
4-4-2نیروی تعمیم یافته¬ی ناشی از محرک¬ها:    67
4-5 مدل سازی مکانیزم با استفاده از Sim Mechanic:    69
4-6 معرفی ربات ساخته شده:    72
4-6-1 قطعات مکانیکی مکانیزم:    72
4-6-2 قطعات الکترونیکی و کنترل موتورهای مکانیزم:    73
5-نتیجه¬گیری و پیشنهادات:
5-1 نتیجه گیری:    76
5-2 پیشنهادات:    78

ضمیمه الف: کد میکرو کنترلر    79
فهرست منابع:    86


فهرست جدول ها:
جدول 2-1: پارامتر¬های هندسی مکانیزم پیشنهادی    32
جدول 3-1: پارامتر¬های هندسی مکانیزم پیشنهادی    50
جدول 4-1: پارامتر¬های هندسی مکانیزم پیشنهادی    69
جدول 4-2: قطعات مکانیکی مکانیزم    74
جدول 4-3: قطعات الکتریکی مکانیزم    74
جدول 4-4: معرفی نماد¬های استفاده شده در برنامه نوشته شده جهت کنترل موتور¬ها    76

فهرست شکل ها:
شکل 1-1: ساختار¬های تنسگریتی سنلسون    1
شکل 1-2: ساختار تنسگریتی گنبدی فولر    2
شکل 1-3: مکانیزم تنسگریتی منشوری T-3    4
شکل 1-4: مکانیزم تنسگریتی نوع اول ارائه شده توسط اسکلتون و همکاران    5
شکل 1-5 مکانیزم تنسگریتی نوع دوم ارائه شده توسط اسکلتون و همکاران    6
شکل 1-6: مکانیزم تنسگریتی ارائه شده توسط آلبرت رویرا و همکاران    6
شکل 1-7: مکانیزم تنسگریتی فضایی با شش درجه آزادی، 3-PUS ارائه شده توسط آرسنالت و گاسلین    7
شکل 1-8: مکانیزم تنسگریتی فضایی سه درجه آزادی ارائه شده توسط آرسنالت و گاسلین    8
شکل 1-9: مکانیزم تنسگریتی سه درجه آزادی ارائه شده توسط موهر و آرسنالت    8
شکل 1-10: مکانیزم تسگریتی تران    9
شکل 1-11: مکانیزم تنسگریتی مارشال    10
شکل 1-12: مکانیزم تنسگریتی سه درجه آزادی ارائه شده توسط تور    11
شکل 1-13: مکانیزم تنسگریتی ارایه شده توسط اوفر شای و همکاران    11
شکل 1-14: مکانیزم تنسگریتی فضایی ارائه شده توسط کران و مون    12
شکل 1-15: مکانیزم تنسگریتی صفحه¬ای ارائه شده توسط کران و مون    13
شکل 2-1: مدل مکانیزم تنسگریتی پیشنهادی    18
شکل 2-2: مدل گرافیکی مکانیزم تنسگریتی    18
شکل 2-3: محرک¬های پیستونی و کابلی مکانیزم پیشنهادی    19
شکل 2-4: نیرو در محرک¬های مکانیزم    32
شکل 2-5: تغییرات طول پیستون و کابل در محرک فنری    33
شکل 2-6: نیرو در محرک¬های مکانیزم    34
شکل 2-7: تغییرات طول پیستون و کابل در محرک فنری    34
شکل 3-1: مکانیزم تنسگریتی3-UPS.    36
شکل 3-2: مکانیزم تنسگریتی3-UPS، (a) صفحه¬ی ثابت، (b) صفحه¬ی متحرک مکانیزم    37
شکل 3-3: بازو¬ی i ام مکانیزم    42
شکل 3-4: نیرو در محرک¬های مکانیزم تنسگریتی    51
شکل 3-5: تغییرات مختصات تعمیم یافته    51
شکل 3-6: تغییرات سرعت مکانیزم    52
شکل 3-7: نیرو در محرک¬های مکانیزم تنسگریتی    52
شکل 3-8: تغییرات مختصات تعمیم یافته    53
شکل 3-9: تغییرات سرعت مکانیزم    53
شکل 4-1: مکانیزم تنسگریتی 3-PUS    55
شکل 4-2: نمای جانبی مکانیزم تنسگریتی ساخته شده    56
شکل 4-3: نمودار حرکتی مکانیزم تنسگریتی    57
شکل 4-4: پایه¬¬ی مکانیزم و موقعیت مفصل¬های منشوری    58
شکل 4-5: بازوی iام مکانیزم    58
شکل 4-6: نمودار تغییرات مختصات گره اول، بین دو موقعیت تعادلی    70
شکل 4-7: مدل سازی مکانیزم در نرم افزار Matlab    71
شکل 4-8: نمای بالایی مکانیزم پیشنهادی    72
شکل 4-9: درایور مکانیزم تنسگریتی    74

 
1-    مقدمه

1-1 معرفی ساختار¬های تنسگریتی:

برای اولین بار مفهوم تنسگریتی، توسط سنلسون و فولر در اواخر دهه¬ی 1940 مطرح شد. دیدگاه سنلسون به ساختار¬های تنسگریتی تنها یک نگاه هنری بود. تعدادی از ساختار¬های تنسگریتی سنلسون در شکل زیر نشان داده شده است[1].

 
شکل 1-1: ساختار¬های تنسگریتی سنلسون[1].

در مقابل، فولر، از مفهوم تنسگریتی به عنوان یک ایده¬ در معماری استفاده کرده است. در شکل 1-2،  یکی از ساختار¬های تنسگریتی گنبدی شکل او نمایش داده شده است. بسیاری از ایده¬های او هنوز در معماری استفاده می-شوند[2].
 
 
شکل 1-2: ساختار تنسگریتی گنبدی فولر[2].

فولر ساختار¬های تنسگریتی را اجتماعی از اجزاء تحت کشش و تحت فشار که در سیستمی ناپیوسته از اجزاء تحت فشار قرار گرفته¬اند تعریف کرد[3]. همچنین پیو در یک تعریف دیگر، ساختار¬های تنسگریتی را به این صورت تعریف کرده است: هنگامی یک سیستم تنسگریتی برقرار می¬شود که مجموعه-ای از اجزاء ناپیوسته و تحت فشار با مجموعه¬ای پیوسته از اجزاء تحت کشش متقابلا تحت اثر قرار گیرند و یک حجم پایدار را در فضا بوجود آورند. این تعریف عام¬ترین تعریفی است که در مراجع مختلف از سیستم تنسگریتی ارائه می¬شود[4].


1-2 کاربرد ساختار¬های تنسگریتی در رباتیک:

در سال¬های اخیر ایده حرکت و تغییر شکل در ساختار¬ها تنسگریتی مطرح شده است. می¬توان با یک تغییر طول مناسب در کابل¬ها و عضوهای فشاری حرکت مطلوب و تغییر شکل مورد نظر را در سازه ایجاد کرد. لذا ساختار¬های تنسگریتی یک ایده جدید برای طراحی و ساخت ربات¬هایی با ویژگی¬های ویژه نسبت به ربات¬های متداول می¬باشند.
بسیاری از ویژگی¬های ساختار¬های تنسگریتی، آنها را برای استفاده در رباتیک مناسب کرده است. به عنوان نمونه¬ای از این ویژگی¬ها، می¬توان به موارد زیر اشاره کرد. این نوع سازه¬ها دارای جرم کم، در عین حال محکم و دارای نسبت مقاومت به جرم استثنایی می¬باشند. در این ساختار¬ها، عضو-ها تنها تحت نیرو¬های محوری قرار گرفته¬اند و نیرو¬های خارجی وارد بر سیستم بصورت محوری و بدون گشتاور در سیستم پخش می¬شود و در نتیجه مقاومت سیستم افزایش می-یابد. علاوه بر این با جرم کم دارای حرکت سریع می¬باشند و اثر اینرسی کمتر مشکل ساز است. این ساختار¬ها دارای قابلیت صرفه جویی در حجم هستند و می¬توانند به نحوی طراحی شوند که در زمانی که از این ساختار¬ها استفاده نمی-شود حجم بسیار کمی اشغال ¬کنند[5]. با توجه به وجود عضو-های انعطاف پذیر، ساختار¬های تنسگریتی می¬توانند شوک¬ها را جذب کنند. در نهایت چون ساختار¬های تنسگریتی مکانیزم¬هایی موازی می¬باشند هر کدام از محرک¬ها به تنهایی می¬توانند درجات آزادی سیستم را تحت تاثیر قرار دهند[6].


دانلود با لینک مستقیم


بررسی تاثیر بنتونیت بر مقاومت استاتیکی ماسه سست با استفاده از آزمایش سه محوری

اختصاصی از کوشا فایل بررسی تاثیر بنتونیت بر مقاومت استاتیکی ماسه سست با استفاده از آزمایش سه محوری دانلود با لینک مستقیم و پر سرعت .

بررسی تاثیر بنتونیت بر مقاومت استاتیکی ماسه سست با استفاده از آزمایش سه محوری


بررسی تاثیر بنتونیت بر مقاومت استاتیکی ماسه سست با استفاده از آزمایش سه محوری

• مقاله با عنوان: بررسی تاثیر بنتونیت بر مقاومت استاتیکی ماسه سست با استفاده از آزمایش سه محوری  

• نویسندگان: محمود حسنلوراد ، سید محمد حسین خاتمی  

• محل انتشار: دهمین کنگره بین المللی مهندسی عمران - دانشگاه تبریز - 15 تا 17 اردیبهشت 94  

• فرمت فایل: PDF و شامل 11 صفحه می باشد.

 

 

 

چکیــــده:

خاک های مخلوط مانند ماسه های رسی، ماسه های سیلتی و سیات های رسی بیشتر از خاک‌های خالص مانند ماسه تمیز، رس و سیلت در طبیعت یافت می‌شوند. به دلیل  آنکه تصور می‌شد ریزدانه‌ها و  ماسه‌های حاوی ریزدانه به دلیل وجود چسبندگی مقاومت بیشتری نسبت به ماسه‌های تمیز دارند، رفتار مقاومتی آنها کمتر مورد توجه قرار گرفته بود. در این مقاله با افزودن مقادیر مختلف بنتونیت به صورت وزنی به ماسه فیروزکوه، تاثیر ریزدانه‌های پلاستیک مورد مطالعه قرار گرفته است. تعدادی آزمایش سه محوری تحکیم یافته - زهکشی نشده استایکی بر روی نمونه‌ها با درصدهای صفر، 5 و 10 درصد بنتونیت انجام شده است. با افزایش درصد بنتونیت کاهش قابل ملاحظه مقاومت استاتیکی رخ داد. همچنین با افزودن بنتونیت مقدار فشار آب حفره‌ای مثبت نمونه افزایش یافت.

________________________________

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **

** توجه: در صورت مشکل در باز شدن فایل PDF مقالات نام فایل را به انگلیسی Rename کنید. **

** درخواست مقالات کنفرانس‌ها و همایش‌ها: با ارسال عنوان مقالات درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن مقالات در سایت به راحتی اقدام به خرید و دریافت مقالات مورد نظر خود نمایید. **


دانلود با لینک مستقیم


کنترل ولتاژ ثانویه ترانسفورماتور با به کارگیری تپ چنجر و جبرانگر استاتیکی توان راکتیو

اختصاصی از کوشا فایل کنترل ولتاژ ثانویه ترانسفورماتور با به کارگیری تپ چنجر و جبرانگر استاتیکی توان راکتیو دانلود با لینک مستقیم و پر سرعت .

کنترل ولتاژ ثانویه ترانسفورماتور با به کارگیری تپ چنجر و جبرانگر استاتیکی توان راکتیو


 کنترل ولتاژ ثانویه ترانسفورماتور با به کارگیری تپ چنجر و جبرانگر استاتیکی توان راکتیو

کنترل ولتاژ ثانویه ترانسفورماتور با به کارگیری تپ چنجر و جبرانگر استاتیکی توان

Voltage Control Of Secondary Side Of Transformer with coordination Of SVC and ULTC

 

چکیده

کنترل ولتاژ در یک شبکه قدرت همواره یکی از مهمترین چالش های صنعت برق بوده است. از این رو در این پایان نامه، به منظور دستیابی به ولتاژ با دامنه ثابت و مطلوب، از ترکیب همزمان ترانسفورماتورهای مجهز به تپ چنجر و جبرانگرهای استاتیکی توان راکتیو استفاده شده است. و از آنجایی که سرعت پاسخگویی SVC و ULTC متفاوت می باشد بایستی در ترکیب آنها، سیاست های کنترلی ویژه ای در نظر گرفته شود تا از این طریق بتوان با ایجاد نوعی هماهنگی در ترکیب، در امر کنترل از مشارکت هردو المان بهره برد.

با توجه به دینامیک گسسته ULTC و همچنین به سبب آنکه مشخصه کنترلی جدیدی که برای SVC مدنظر قرار داده شده است، دارای طبیعتی هایبرید، یعنی ترکیبی از دینامیک پیوسته و گسسته می باشد، جهت طراحی سیستم کنترل هماهنگ کننده از نظریه کنترل نظارتی بهره گرفته می شود. مزیت استفاده از این روش را می توان به طور خلاصه عدم نیاز به در نظر گرفتن مسائلی از قبیل وجود تاخیر زمانی، وجود باند مرده در دینامیک تپ چنجر و یا غیرخطی بودن رفتار فرآیند برشمرد. اما چالش اساسی در به کارگیری این نظریه، مشکلات مربوط به پیاده سازی عملی آن می باشد.

فصل اول: مقدمه

1-1- مقدمه

کنترل ولتاژ و تثبیت آن در یک شبکه قدرت به منظور پایداری شبکه و نیز حفظ محدوده مجاز عملکرد تجهیزات، امری اجتناب ناپذیر و همواره یکی از مهمترین مسائل این حوزه بوده است. به منظور دستیابی به این مهم، در سیستم های قدرت از سه روش عمده استفاده می شود.

1- تغییر ست نقطه تنظیم سیستم تحریک ژنراتورها

2- تغییر تپ ترانسفورماتورها

3- استفاده از جبرانسازی موازی

در روش نخست، محدودیت حرارتی سیم پیچ ژنراتورها به عنوان یک قید میزان توان راکتیو تولیدی / مصرفی نیروگاه ها را محدود می کند. در سال های اخیر مطالعات زیادی به منظور ارائه روش های نوین کنترل توان راکتیو و ولتاژ جهت افزایش سطح امنیت و پایداری سیستم ارائه شده است.

ترانسفورماتورهای مجهز به تپ چنجر به صورت گسترده ای جهت تنظیم ولتاژ در شبکه های قدرت به کار گرفته می شوند. با پیشرفت روزافزون صنعت و از آنجا که دسته وسیعی از تجهیزات الکتریکی نظیر موتورهای القایی، لامپ های روشنایی و… جهت کارایی مناسب نیاز به آن دارند که همواره در ولتاژ نامی کار کنند، در بسیاری از موارد بخصوص در شبکه های توزیع انرژی الکتریکی، جهت تثبیت ولتاژ علاوه بر ULTC از یکسری از ادوات جبرانگر نیز استفاده شده است.

یکی از مهمترین اجزا سیستم های قدرت، ادوات FACTS می باشند. امروزه برخی از انواع آنها از جمله SVC در سطح وسیعی در صنعت انتقال و توزیع انرژی الکتریکی جهت کنترل توان راکتیو و ولتاژ مورد استفاده قرار گرفته است. SVC برای اولین بار در سال 1970 میلادی برای جبران توان راکتیو و بهبود پایداری دینامیکی سیستم های قدرت به کار گرفته شد و در بهبود پایداری ولتاژ اثرات مثبتی نشان داد.

امروزه SVC، یکی از المان های کلیدی سیستم قدرت می باشد که بخاطر سرعت پاسخگوئی بالای آن، قابلیت اطمینان شبکه بهبود می یابد و همچنین می تواند علاوه بر تثبیت ولتاژ، جهت دستیابی به شرایط دینامیکی پایدار، مثل پایداری گذرا و میرا نمودن نوسانات توان نیز به کار آید. بخاطر همین قدرت پاسخگویی سریع، زمانی که با تثبیت کننده های دیگر ولتاژ نظیر ULTC در مدار بکار می روند، پاسخ های زمانی کاملا متفاوتی داشته و SVC قبل از ULTC به انحراف ولتاژ پاسخ می دهد. در نتیجه زمانی که خروجی SVC در حین اختلاف ولتاژهای حالت دائمی به ماکسیمم حد ظرفیت خازنی خود رسید، خواص کنترلی خود را از دست داده و نظیر بانک خازنی موازی ثابت عمل می نماید. با توجه به آنکه استفاده از SVC به عنوان یک کنترل کننده اضطراری برای اعمال پاسخ سریع به تغییرات ناگهانی ولتاژ اجتناب ناپذیر است، باید به طریقی ظرفیت آن برای پاسخ به تغییرات احتمالی ولتاژ در لحظات آینده حفظ شود. بنابراین به کارگیری یک استراتژی کنترلی هماهنگ کننده جهت هماهنگی ULTC , SVC لازم است.

در این راستا مشخصه V-I جدیدی برای SVC به کار گرفته می شود که در آن نوعی رفتار سوئیچینگ مشاهده می گردد. و از آنجا که ULTC نیز دارای رفتار سوئیچینگ می باشد، جهت طراحی سیستم کنترل هماهنگ کننده می توان از نظریه کنترل نظارتی بهره گرفت. مزیت استفاده از این روش را می توان به طور خلاصه عدم نیاز به در نظر گرفتن مسائلی از قبیل وجود تاخیر زمانی، وجود باند مرده در دینامیک تپ چنجر و یا غیرخزی بودن رفتار فرایند برشمرد. در این پایان نامه با استفاده از روش کنترل نظارتی متمرکز یک کنترل ناظر برای سیستم، طراحی می نماییم.

ساختار پایان نامه به این صورت است که در فصل دوم مروری بر سیستم های گسسته پیشامد و کنترل نظارتی آنها و روشهای متعدد طراحی کنترل نظارتی داشته، پس از آن ساختار و عملکرد چند نمونه از ادوات کنترل ولتاژ و مزایا و معایب آنها را بررسی می کنیم. سپس به مطالعه کارهای مختلف انجام شده در این زمینه که غالبا با ترکیب دو یا چند نمونه از این ادوات بوده پرداخته و مزایا و معایب آن را بر می شماریم.

در فصل سوم سیستم به کار گرفته شده معرفی و پس از آشنایی بیشتر با المان های آن به سراغ طراحی کنترل کننده با هدف کنترل ولتاژ می رویم و کنترل کننده ای را برای هریک از اجزای مدار معرفی می نماییم.

در فصل چهارم کنترل کننده حلقه بازی را برای کنترل سیستم طراحی کرده، نتایج حاصل حاکی از نامطلوب بودن پاسخ است. بنابراین با استفاده از ULTC کنترل حلقه بسته ای برای مدار طراحی می نماییم. این کنترل کننده در راستای تحقق و رسیدن به هدف گام برمی دارد، اما نسبت به تغییر پارامترها مقاوم نیست. جهت نیل به هدف از ترکیب دو المان SVC و ULTC بهره می گیریم. از آنجا که سرعت پاسخگویی این المان ها یکسان نمی باشد لذا کنترل کننده حلقه بسته ای جهت هماهنگ نمودن عملکرد این دو المان طراحی می نماییم. پاسخ ها نشان می دهد، علاوه بر بهبود نتایج حاصل از کنترل کننده قبلی نسبت به تغییر پارامترها نیز مقاوم می باشد.

تعداد صفحه : 97

 


دانلود با لینک مستقیم


تعیین ظرفیت های استاتیکی و دینامیکی خطوط انتقال

اختصاصی از کوشا فایل تعیین ظرفیت های استاتیکی و دینامیکی خطوط انتقال دانلود با لینک مستقیم و پرسرعت .

تعیین ظرفیت های استاتیکی و دینامیکی خطوط انتقال


پایان نامه ارشد برق تعیین ظرفیت های استاتیکی و دینامیکی خطوط انتقال

 

 

 تعیین ظرفیت های استاتیکی و دینامیکی خطوط انتقال

ظرفیت انتقال خطوطATCیکی از عوامل بسار مهم در بهره برداری بهینه و مطمئن از سیستم های قدرت میباشد.بطوریکه هرچه ظرفیت خطی بیشتر باشد نشانگر بهره برداری اقتصادی از شبکه می باشد.البته ظرفیت انتقال خطوط توسط عواملی مانند ماکزیمم توان عبوری از خطوط -افت ولناژ شینه ها-پایداری محدود میگردد.

 

فرمت PDF

تعداد صفحات 132

 

 


دانلود با لینک مستقیم

سمینار ارشد عمران بررسی مقایسه ای روش های تحلیل استاتیکی غیرخطی

اختصاصی از کوشا فایل سمینار ارشد عمران بررسی مقایسه ای روش های تحلیل استاتیکی غیرخطی دانلود با لینک مستقیم و پرسرعت .

سمینار ارشد عمران بررسی مقایسه ای روش های تحلیل استاتیکی غیرخطی


سمینار ارشد عمران بررسی مقایسه ای روش های تحلیل استاتیکی غیرخطی

 

 

 بررسی مقایسه ای روش های تحلیل استاتیکی غیرخطی

 

فرمت PDF

تعداد صفحات 85


دانلود با لینک مستقیم