کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

دانلود مقاله کامل درباره نگرشهای مولکولی و فیزیولوژیکی به تحمل خشکسالی

اختصاصی از کوشا فایل دانلود مقاله کامل درباره نگرشهای مولکولی و فیزیولوژیکی به تحمل خشکسالی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

نگرشهای مولکولی و فیزیولوژیکی

به تحمل خشکسالی

نگرش های مولکولی و فیزیولوژیکی به تحمل خشکسالی

آب عامل اصلی محدود کننده در کشاورزی جهان می باشد. در کل اغلب گیاهان زراعی، حتی به یک تنش ملایم از دست دادن آب نیز به دشت حساس هستند. با وجود این، چند جنس از گیاهان مختص آفریقای جنوبی وجود دارند که قابلیت بسیار بالا برای مقاومت در برابر از دست دادن آب و خشک شدن را دارند. به این جنس ها، گیاهان قیامت "resurrection Plants" گفته می شود.

ما از Xerophta viscose به عنوان نمونه گیاهان قیامت (تک لپه ای) استفاده کردیم تا ژن های مرتبط با تحمل فشار اسمزی را استخراج کنیم. چندین ژن که بصورت متمایز بیان می شوند، در سطوح بیوشیمایی و ملکولی مورد مطالعه قرار گرفتند. این ژنها همان هایی هستند که قابلیت عملکردی خوبی به اشریشیاکلی در شرایط تنش اسمزی می دهند. ما در این مقاله از این آزمایش به عنوان پایه ای برای بحث درباره نگرش های ملکولی و فیزیولوژیکی به تحل خشکسالی، استفاده خواهیم کرد.

(osmoprotectants)، آبسیزیک اسید (ABA) و عوامل رونویسی

مقدمه:

آب یک جزء مهم و اساسی در متابولیسم تمام ارگانیسم های رانده است. آب، انجام شدن بسیاری از واکنش های حیاتی زیست شناختی را بوسیله دارا بودن خصوصیاتی نظیر حلالیت، فراهم کردن محیط انتقال، سرد کردن محیط از راه تبخیر، تسهیل می کند. (Bohert et al., 1995).

در گیاهان و سایر فتواتوتروف ها، آب نقش مهمی در فراهم کردن انرژی مورد نیاز برای پیشبرد فتوسنتز دارد. ملکولهای آب، طی فرآیندی بنام اتولیز شکسته شده و الکترونهایی بر جای می گذارند که این الکترونها برای به چرخه درآوردن انرژی نوری ذخیره شده در فتوسیستم II ضروری می باشند. (Salisbury an Ross, 1992a)

یکی از پیامدهای مهم تنش خشکی، از دست دادن آب پروتوپلاسمی است که منجر به افزایش غلظت یونهایی مانند می شود. در غلظت های بالا چنین یونهایی به طور موثری مانع عملکرد متابولیکی می شوند (Hartung et al., 1998). همچنین افزایش غلظت اجزای تشکیل دهنده پروتوپلاسم و از دست دادن آب سلول باعث ایجاد وضعیت خاصی به نام «حالت شیشه ای: glassy state» می شود. در این حالت، ویسکوزیته مایع موجود در داخل سلول بیشتر می شود که در نتیجه باعث افزایش احتمال برهم کنش های مولکولی و واسرشت شدن پروتئین ها و فیوژن غشا می شوند. (Hartung et la., 1998; Hoekstra et al., 2001).

بنابراین گیاه برای حفظ تورگور سلولی و عملکردهای متابولیکی نیاز به بیان ژنهای خاصی دارد. گروه تحقیقاتی ما می کوشد گیاهان تراژنی زراعی و همچنین وحشی را که قادر به مقاوت در برابر خشکی باشند، ایجاد کند. منبع ژنها گیاهی به نام Xerophyta viscose (Baker) از خانواده Vello=iaceae است که متعلق به گروه کوچکی از نهاندانگان می باشد. این گیاه به علت قابلیت فوق العاده تحمل خشکی به «گیاه قیامت» ملقب شده است (Farrant, 2000, Gaff, 1977).

این گیاه (X. viscose) تا 5 درصد محتوای آب نسبی (RWC) می تواند آب از دست دهد و آبیاری مجدد این گیاه تقریباً به مدت 80 ساعت آنرا سیراب کرده و گیاه فعالیت های یزیولوژیکی خود را از سر می گیرد. (Sherwin and Farront, 1998).

ژنهایی که در این مقاله مورد بررسی قرار خواهند گرفت، شامل موارد زیر هستند: (XVPer 1 (کد کننده یک آنتی اکسیدان)، VATP1XV (کد کننده یک پروتئین زیر واحدی C مانند از آنزیم –H+ آدنوزین تری فسفاتاز)، XVGOLS (کد کننده یک گالاکتینول سنتاز)، ALDRXV4 (کد کننده یک آلدوز ردوکتاز)، XVSAP1 (کد کننده یک پروتئین متصل شونده به غشای سلولی) و DREB1A (کد کننده یک عامل رونویسی). برای تعیین اثرات ناشی از بیان این ژنها در تک لپه ای ها، آنها را به گیاه علفی بنام Digitaria sanguinalis انتقال دادیم و برای انتقال این ژنها خودمان یک سیستم انتقال طراحی کرده ایم (chen et al., 1998). سپس اگر نتایج مثبت باشند، ژنها به محصولات زراعی مانند ذرت (Zea mays) نیز منتقل خواهند شد. برای انجام چنین کاری بر روی دو لپه ای ها، ما نخست آن ژن ها را به Arabidopsis thaliana و Nicotina tobacum منتقل می کنیم.

پدیده تحمل خشکی یک پدیده پیچیده است که شامل بیان سازمان یافته ژنهای زیادی است (Walters et la., 2002) به عبارت دیگر، برای بدست آوردن گیاهان مقاوم در برابر خشکی، چند ژن باید به طور همزمان بیان شوند (Co-expression).

به عنوان مثال، بیان XVPer1، که به نظر می رسد DNA را در برابر گونه های فعال اکسیژن محافظت می کند، همزمان با بیان XVSAP1، که احتمالاً از تراوایی غشا جلوگیری می کند، همراه با بیان XVGOLS و ALDRXV4 که هر دو محافظت کننده اسمزی هستند، مجموعه ای از پروتئین های مرتبط به هم را نتیجه می دهد که با همکاری یکدیگر خصوصیت مقاومت در برابر خشکی را نتیجه می دهند.

برخی تغییرات ساختاری و فیزیولوژیکی ایجاد شده در سطح سلولها و در نتیجه در تمام پیکر گیاه از آنجائیکه پاسخ گیاهان به خشکی پیچیده و مختلف است، بنظر نمی رسد که فقط یک ژن در ایجاد تحمل خشکی نقش داشته باشد. بنابراین نیاز به درک پاسخ فیزیولوژیکی گیاهان تحت شرایط کمبود آب از اهمیت خاصی برخوردار است. (رجوع شود به Alpert and Oliver, 2002; Levitt, 1980, Walters et la. 2002 برخلاف گیاهان عادی، که پتانسیل آب را بالاتر از محیط حفظ می کنند و تلاش می کنند به فعالیت خود در دوره های کمبود آب ادامه دهند، گیاهان مقاوم خشکی یک استراتژی کاملاً متفاوت را به کار می گیرند: بافت های زنده تمام آب آزاد خود را از دست می دهند و سپس به طور آنی آب در دسترس بافت ها قرار می گیرد. این توانایی غیرعادی برای بقا در فقدان شدید آب در بافتهای زنده فقط در 100 نهاندانه مشاهده شده است (Gaff, 1977). اگر چه گیاهان قیامت ارزش اقتصادی چندانی برای کشاورزی ندارند، فهم بیشتر این پدیده می تواند نگرشهایی در مکانیسم های ممکن برای بهبود مقاومت گیاهان زراعی، ایجاد کند. در واقع روشهای زیادی وجود دارد که بوسیله آنها گیاهان مختلف به خشکسالی پاسخ می دهند (خلاصه شده در نمودار 1)

 


دانلود با لینک مستقیم


دانلود مقاله کامل درباره نگرشهای مولکولی و فیزیولوژیکی به تحمل خشکسالی

دانلود پاورپوینت وضعیت تحمل وزن - 27 اسلاید

اختصاصی از کوشا فایل دانلود پاورپوینت وضعیت تحمل وزن - 27 اسلاید دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت وضعیت تحمل وزن - 27 اسلاید


دانلود پاورپوینت وضعیت تحمل وزن - 27 اسلاید

 

 

 

در حین ایستادن نصف وزن بدن بر هر سمت قرار می گیرد ، از این مقدار  نیمی بر پاشنه و نیمی بر قسمت  قدامی یعنی بر مفاصل MTP وارد می شود که در توزیع آن دو بخش بر ریشه شست پا و بر انگشتان دیگر هر کدام یک بخش واقع میشود ، حال اگر تعادل بهم ریزد ، مثلا“ بر یک سمت فشار زیادتر و بر سمت دیگر فشار کمتری وارد میگردد.

lافزایش فشار میتواند باعث Hypertrophy پنجه: corn  یا منجر به Ulceration  گردد .
lبا دادن کفه یا کفش مناسب میتوانیم در تصحیح این توزیع اقدام کنیم .

برای دانلود کل پاورپوینت از لینک زیر استفاده کنید:


دانلود با لینک مستقیم


دانلود پاورپوینت وضعیت تحمل وزن - 27 اسلاید

ترجمه مقاله الگوریتم های مسیر یابی و خوشه بندی تحمل پذیر شکست انرژی بهره ور برای شبکه های حسگر بی سیم

اختصاصی از کوشا فایل ترجمه مقاله الگوریتم های مسیر یابی و خوشه بندی تحمل پذیر شکست انرژی بهره ور برای شبکه های حسگر بی سیم دانلود با لینک مستقیم و پر سرعت .
ترجمه مقاله الگوریتم های مسیر یابی و خوشه بندی تحمل پذیر شکست انرژی بهره ور برای شبکه های حسگر بی سیم

این مقاله ترجمه مقاله انگلیسی  Energy efficient fault tolerant clustering and routing algorithms
for wireless sensor networks

می باشد ./

 

سال انتشار : 2015/

تعداد صفحات مقاله انگلیسی :14/

تعداد صفحات فایل ترجمه : 25/

فرمت فایل ترجمه : Word /

 

مقاله اصلی را به زبان انگلیسی می توانید رایگان از اینجا دریافت فرمایید /

 

به همراه ترجمه فایل پاورپوینت ارایه نیز شامل 19اسلاید نیز تقدیم شما می شود . 

 

 

چکیده

بقای انرژی و تحمل شکست دو موضوع عمده در به کارگیری شبکه های حسگر بی سیم (WSN) می باشد. طراحی الگوریتم های مسیر یابی و خوشه بندی برای WSN مقیاس بزرگ باید هر دوی این مسائل را برای عملیات اجرای دراز مدت شبکه ترکیب کند. در این مقاله، ما خوشه بندی توزیع شده و الگوریتم های مسیر یابی را پیشنهاد می کنیم که مشترکا با DFCR به آن اشاره می کنیم. الگوریتم نشان داد که انرژی بهره ور و تحمل پذیر شکست است. DFCR از یک بازیافت زمان اجرا توزیع شده گره های حسگر با توجه به شکست ناگهانی سر خوشه ها (CHها) استفاده می کند. این از گره های حسگر مراقبت می کند که هیچ CH در محدوده ارتباطی آن ها نباشد. ما آزمایش های گسترده ای روی الگوریتم پیشنهادی با استفاده از سناریوهای مختلف شبکه انجام دادیم. نتایج تجربی در مقایسه با الگوریتم های موجود، توان الگوریتم از نظر معیارهای عملکرد مختلف را نشان داد 

 

 

 

تماس با ما برای راهنمایی یا ترجمه با آدرس ایمیل:

magale.computer@gmail.com

 

 

شماره تماس ما در نرم افزار تلگرام:

تماس با ما+98 9337843121 

 

 تماس با ماکانال تلگرام‌  @maghalecomputer

 

 توجه: اگر کارت بانکی شما رمز دوم ندارد، در خرید الکترونیکی به مشکل برخورد کردید و یا به هر دلیلی تمایل به پرداخت الکترونیکی ندارید با ما تماس بگیرید تا راههای دیگری برای پرداخت به شما پیشنهاد کنیم.

 


دانلود با لینک مستقیم


ترجمه مقاله الگوریتم های مسیر یابی و خوشه بندی تحمل پذیر شکست انرژی بهره ور برای شبکه های حسگر بی سیم

بررسی فیزیولوژیک تحمل به تنش کم آبی در ژنوتیتهای بهاره کلزا

اختصاصی از کوشا فایل بررسی فیزیولوژیک تحمل به تنش کم آبی در ژنوتیتهای بهاره کلزا دانلود با لینک مستقیم و پر سرعت .

بررسی فیزیولوژیک تحمل به تنش کم آبی در ژنوتیتهای بهاره کلزا


بررسی فیزیولوژیک تحمل به تنش کم آبی در ژنوتیتهای بهاره کلزا

بررسی فیزیولوژیک تحمل به تنش کم آبی در ژنوتیتهای بهاره کلزا

68 صفحه در قالب word

 

 

 

 

چکیده

به منظور بررسی اثر تنش کم‌آبی در مرحله رشد زایشی بر صفات زراعی و فیزیولوژیک ژنوتیپ‌های کلزا، آزمایشی به صورت کرت‌های خرد شده در قالب طرح پایه بلوک‌های کامل تصادفی در چهار تکرار در سال 1382 در مزرعه تحقیقاتی مؤسسه تقحیقات اصلاح و تهیه نهال و بذر کرج اجرا شد. در این آزمایش، آبیاری به عنوان عامل اصلی در دو سطح آبیاری معمول براساس 80 میلی تبخیر از تشتک کلاس A (شاهد) و تنش کم‌آبی (قطع آبیاری از مرحله ساقه‌دهی به بعد تا مرحله بلوغ فیزیولوژیکی) و ژنوتیپ‌های بهاره کلزا به عنوان عامل فرعی در 10 سطح شامل اوگلا، نوزده- اچ، هایولا 401 (کانادا)، هایولا 401 (صفی‌آباد)، هایولا 401 (برازجان)، سین-3، هایولا 420، آپشن 500، هایولا 308 و کوانتوم بودند. نتایج حاصل نشان داد که قطع آبیاری از مرحله ساقه‌دهی به بعد، تأثیر نامطلوبی بر فعالیت‌های رشدی، عملکرد و اجزاء عملکرد داشت. در میان اجزاء عملکرد دانه، کاهش وزن هزار دانه (8 درصد) و به ویژه تعداد دانه در خورجین (3/11 درصد)، بیشترین سهم را در کاهش عملکرد دانه (16 درصد) ژنوتیپ‌های بهاره کلزا در شرایط تنش کم‌آبی دارا بودند. ژنوتیپ‌ها در شرایط تنش کم‌آبی میزان آمینواسید پرولین بالاتری در برگ داشتند، در حالی که میزان محتوای نسبی آب برگ و میزان کلروفیل b, a و کل در آنها پایین‌تر بود. کم‌آبی، نسبت کلروفیل a به b را افزایش داد که این امر ناشی از کاهش بیشتر میزان کلروفیل b نسبت به کلروفیل a بود. میزان پرولین تجمع یافته در برگ در شرایط تنش کم‌آبی، بیان‌گر میزان خسارت وارده به ژنوتیپ‌ها بوده و ارتباطی با تحمل به تنش نداشت. همچنین، کاهش میزان محتوای نسبی آب برگ در ژنوتیپ‌های حساس به کم‌آبی بیشتر بود. ژنوتیپ‌هایی که در شرایط تنش کم‌آبی، محتوای نسبی آب برگ خود را به میزان بالاتری حفظ نمودند، عملکرد دانه بالاتری را تولید نمودند. بر پایه نتایج، این گونه استنباط می‌شود که ژنوتیپ‌های سین- 3، نوزده- 1چ، هایولا 420، هایولا 401 (برازجان) و هایولا 401 (کانادا) با شاخص تحمل به تنش بالاتر نسبت به سایر ژنوتیپ‌های مورد بررسی، سازگاری مناسب‌تری با تنش کم‌آبی داشتند و توانستند هم در شرایط آبیاری معمول و هم تنش کم‌آبی، میزان عملکرد دانه بالاتری را تولید نمایند. در مقابل، ژنوتیپ هایولا 308، بیشترین حساسیت را به کم‌ آبی در میان ژنوتیپ‌های مورد بررسی دارا بود.

واژه‌های کلیدی: ژنوتیپ‌های کلزا- عملکرد و اجزای عملکرد- تنش کم‌ آبی- پرولین- کلروفیل- محتوای نسبی آب برگ.



مقدمه

در حدود 40 درصد از اراضی کره زمین در مناطق خشک و نیمه خشک قرار دارند
(Meigs, 1953). در این مناطق، آب محدودیت اصلی بوده و خشکی از جمله مهمترین عوامل القاء کننده تنش در گیاهان زراعی به حساب می‌آید. متأسفانه کمبود آب، تنها به این مناطق محدود نشده و گاهی در سایر نقاط هم توزیع نامنظم باران دوره‌های دشواری را برای رشد گیاه ایجاد می‌نماید. چنین تنشی بر روی عملکرد محصول اثر گذاشته و اغلب باعث ایجاد افت در آن می‌گردد. در شرایط تنش خشکی، پتانسیل آب برگ  و مقدار آن نسبی برگ (LRWC) کاهش پیدا کرده و فرآیندهایی نظیر فتوسنتز، توسعه برگ و نیز تراکم و اندازه روزنه‌ها تحت تأثیر قرار می‌گیرند

(Sierts et al., 1987; Sloan et al., 1990).

کاهش رطوبت در مراحل حساس زیستی گیاه، تغییرات و دگرگونی‌هایی را ایجاد می‌نماید. ماهیت دینامیک وضعیت آبی گیاه، در برگیرنده وابستگی اثرات تنش خشکی به عواملی مانند شدت، دوام و زمان تنش در طول انتوژنی و نیز سایر متغیرهای محیطی است که این امر پیچیدگی خاصی را در پاسخ گیاه ایجاد می‌کند (Chavan et al., 1990). بدین ترتیب، مقاومت و یا تحمل خشکی از جنبه‌های فیزیولوژیک و اصلاحی مهم تلقی می‌شود. در این راستا، هدایت روزنه کمتر، توانایی برداشت آب از خاکی با رطوبت کم، حفظ پتانسیل آب و میزان آب نسبی برگ (Blum and Mayer, 1999) از طریق ریشه‌های عمیق و منشعب، تورم مثبت برگ در پتانسیل‌های آبی پایین و فرآیندهای مرتبط با تورم و تجمع امینواسیدهایی همچون پرولین، بتائین و … در گیاه جهت تنظیم اسمزی، جزء ساز و کارهای مهم محسوب می‌گردند (Fukei and Cooper, 1995; Kumar and Singh, 1998; Niknam and Turner, 1999).

زراعت کلزا در میان دانه‌های روغنی، با توجه به شرایط آب و هوایی ایران پدیده‌ای جدید به شمار آمده و نقطه امیدی برای تأمین روغن مورد نیز محسوب می‌شود (بی‌نام، 1377). دانه‌های کلزا دارای درصد قابل توجهی روغن (45- 40 درصد) بوده و منبع با ارزش برای تأمین روغن خوراکی و نیز مصارف صنعتی می‌باشد. همچنین، پس از استخراج روغن، کنجاله آن از 26 تا 44 درصد پروتئین به طور معمول برخوردار است. کلزا نیز همانند بسیاری از گیاهان زراعی روغنی از تنش کم‌آبی متأثر می‌شود و بسته به وضعیت آبی در مراحل ویژه‌ای از فنولوژی خود به ویژه دوره رشد زایشی، کمیت و کیفیتش تحت تأثیر قرار می‌گیرد. علت این امر به احتمال زیاد تغییر در تظاهر ژن‌های کنترل کننده صفات کیفی دانه می‌باشد (Strocher et al., 1995). در بررسی تیمارهای تنش خشکی (تنش در ابتدای رشد رویشی، اواخر رشد رویشی، مرحله گل‌دهی) بر روی ارقام کلزا مشاهده شد که تنش خشکی به طور معنی‌داری تعداد خورجین در هر گیاه، تعداد دانه در هر خورجین و عملکرد دانه را کاهش داد. کاهش عملکرد دانه عمدتاً از طریق کاهش تعداد خورجین در گیاه و بذر در هر خورجین بود. کمترین تعداد خورجین و دانه در خورجین مربوط به گیاهان تنش دیده در مرحله گل‌دهی بود. کاهش وزن دانه نیز در تیمارهای تنش خشکی اعمال شده در اواخر دوره رشد بیشتر بود. کاهش سطح برگ نیز فقط در تیمارهای تنش در اواخر رشد رویشی و گل‌دهی مشاهده شد. در بررسی پایداری غشاء سلولی در شرایط خشکی مشاهده شد که این عامل نسبت به گیاهان شاهد بالاتر است. این افزایش به نظر می‌رسد که یک نوع مکانیزم سازگاری جهت تحمل به تنش خشکی در کلزا باشد. درجه حرارت برگ نیز در گیاهان تنش دیده 1 تا 2 درجه سانتی‌گراد نسبت به شاهد بالاتر بود. درجه حرارت بالاتر برگ، نشانه هدایت روزنه‌ای پایین‌تر و تبادل گازی کمتر در برگ کلزا می‌باشد. کاهش عمکلرد دانه مربوط به کاهش در هدایت روزنه‌ای و فتوسنتز برگ بود. به نظر می‌رسد که تنش خشکی به مدت 4 تا 5 روز در طی رشد رویشی برای عملکرد دانه کلزا کمتر مضر باشد چون گیاهان تا حد زیادی بهبود می‌یابند. در مقابل، تنش خشکی دیرهنگام، به دلیل عدم بهبود کافی منجر به کاهش بیشتر عملکرد دانه می‌شود (Hashem et al., 1998). پتانسیل عملکرد دانه در کلزا در هنگام اعمال تنش خشکی و تنش‌های حرارتی بالا به هنگام دوره گل‌دهی و مراحل قبل از آن نسبت به دیگر مراحل رشدی، کاهش بیشتری می‌یابد. در کلزا، دوره رشد زایشی (اواخر تشکیل جوانه تا ابتدای تشکیل بذر)، حساس‌ترین مرحله به تنش آبی و درجه حرارت بالا است. کلزا عادت رشدی نامحدودی داشته و می‌تواند در شرایط تنش خشکی به طور ذاتی بهبود یابد. این بهبود از طریق افزایش شاخه‌دهی و افزایش کارایی خورجین‌های باقی مانده صورت می‌گیرد. در بررسی اثر تیمارهای حرارتی و رطوبتی (تنش آبی بالا، آبیاری تا 50 درصد آب موجود خاک و تنش آبی ملایم، آبیاری تا 90


درصد آب موجود خاک) بر روی ارقام کلزا و خردل هندی مشاهده شد که تنش آبی، عملکرد دانه را فقط در شاخه فرعی و در گیاه کاهش می‌دهد، در حالی که تأثیری بر عملکرد دانه در ساقه اصلی نداشت. در این آزمایش مشاهده شد که اثر تنش آبی بر عملکرد دانه، عمدتاً مربوط به تغییر صفات هیدرولیکی و غیرهیدرولیکی همانند کلروفیل است. تنش آبی بالا، وزن دانه را حدود 3 درصد نسبت به شاهد کاهش داد (Gan et al., 2004). تنظیم اسمزی، نقش معنی‌دار و مهمی در حفظ پتانسیل آماس و پروسه‌های وابسته به فشار آماس همانند باز شدن روزنه‌ها، فتوسنتز، رشد قسمت هوایی و گسترش ریشه‌ها به اعماق خاک دارد. کوماروسینک (1998) نشان دادند که بیش از 50 درصد کل آب مصرفی به وسیله گیاهان جنس براسیکا که دارا تنظیم اسمزی بالاتر می‌باشند، از لایه‌های پایین‌تر خاک (180-90 سانتی‌متر) جذب می‌شود، در حالی که در گیاهان براسیکای دارای تنظیم اسمزی پایین‌تر، این قضیه برعکس است. در گونه‌های جنس براسیکا، تنظیم اسمزی رابطه مثبتی با عملکرد دانه دارد. همچنین، رابطه نزدیکی میان تنظیم اسمزی و هدایت روزنه‌ای و درجه حرارت برگ در گونه‌های این جنس وجود دارد. کاهش در پتانسیل اسمزی همراه با کاهش محتوای نسبی آب برگ در ژنوتیپ‌های دارای تنظیم اسمزی کمتر نسب به ژنوتیپ‌های دارای تنظیم اسمزی بالاتر کوچکتر و کمتر بود. گیاهان با تنظیم اسمزی بالاتر، هدایت روزنه‌ای خود را بالاتر نگاه داشته و تعرق بیشتری داشتند و هدایت روزنه‌ای و عملکرد دانه بالاتری داشتند. به نظر می‌رسد که فرآیندهای بیوشیمیایی همانند تجزیه کلروفیل و دیگر رنگیزه‌های فتوسنتزی در شرایط تنش، کمتر در این گونه گیاهان تحت تأثیر قرار می‌گیرد (Kumar and Singh, 1998). در بررسی تیمارهای آبیاری (خشکی و آبیاری کامل) در مرحله چهار برگی بر ارقام کلزا و خردل هندی مشاهده شد که تنظیم اسمزی در برگ‌های در حال توسعه در هر دو گونه، دو برابر برگ‌های توسعه یافته بود. خشکی، تغییراتی در تنظیم اسمزی برگ‌های توسعه یافته تمام ژنوتیپ‌ها به دلیل تجمع نیترات (47- 42 درصد)، قندهای محلول (38- 31 درصد) و پرولین (14- 11 درصد) ایجاد نمود. در برگ‌های در حال توسعه، تجمع نیترات و یون پتاسیم همانند پرولین معنی دار بود و اهمیت بیشتری داشت. نیترات در خردل هندی بیشتر نقش داشت در حالی که در دو رقم کلزا، یون پتاسیم اهمیت بالاتری داشت. در مقابل، در برگ‌های توسعه یافته، یون نیترات و قندهای محلول، به ترتیب بیشترین اهمیت را دارا بودند. در کل، برگ‌های در حال توسعه، پتانسیل اسمزی کمتری نسبت به برگ‌های توسعه یافته داشتند. یونهای محلول در آب، منیزیم و کلسیم، سهم معنی‌داری در تنظیم اسمزی نداشتند. اسید آمینه پرولین، یک نشان‌گر مناسب برای تنظیم اسمزی در گیاهان جنس براسیکا بوده، چون در شرایط تنش، غلظت آن، سهم مستقیمی در اندازه تنظیم اسمزی در میان ارقام و برگ‌ها داشت. در این آزمایش، ارتباط یون پتاسیم، قندهای محلول و پرولین با تنظیم اسمزی خطی بود. ولی ارتباط یون نیترات خطی نبود که نشان‌گر این است که تجمع زیاد یون نیترات برای گیاه مضر است. تجمع قندهای محلول در گیاهان خشکی دیده می‌تواند از افزایش هیدرولیز نشاسته، سنتز به وسیله دیگر مسیرها و یا کاهش تبدیل به دیگر محصولات باشد. همچنین، افزایش انتقال کربوهیدرات‌ها به برگ‌ها و یا کاهش انتقال آنها از برگ‌ها می‌تواند سهم در تجمع قندهای محلول در برگ‌ها در شرایط تنش خشکی داشته باشد. کاتیون‌ها و آنیون‌های محلول در شرایط تنش نیز می‌تواند به وسیله توزیع مجدد از ساقه‌ها و دیگر بافت‌های گیاهان تحت تأثیر قرار گیرد. دلیل تجمع زیاد نیترات نیز در شرایط تنش می‌تواند کاهش در فعالیت آنزیم نیترات ردوکتاز باشد (Ma et al., 2004). در بررسی اثرات تیمارهای مختلف آبیاری بر ارقام کلزا و خردل هندی، مشاهده شد در شرایط تنش خشکی با شدت کم، خردل هندی، میزان ماده خشکش 2/1 برابر بیشتر از کلزا بود. در شرایط تنش خشکی شدید نیز وزن خشک خردل هندی دو برابر کلزا بود. شاخص سطح برگ خردل هندی نیز در هر دو تیمار آبیاری بیشتر از کلزا بود. با این حال، وزن مخصوص برگ کمتری نسبت به کلزا داشت، که این امر منجر به سطح سبز برگ بیشتر خردل هندی و رشد بهتر خردل هندی در شرایط تنش نسبت به کلزا گردید. مشخص شد که گونه‌های براسیکا، وزن مخصوص برگ خود را در شرایط تنش خشکی شدید افزایش می‌دهند که منجر به افزایش کارایی مصرف آب گیاه به وسیله کاهش سطح برگ می‌شود. همچنین، کاهش وزن برگ، منجر به افزایش فشار آماس برگ شد. این نگهداری فشار آماس در شرایط تنش ممکن است جریانی را که باعث افزایش در وزن مخصوص برگ می‌شود را به تأخیر اندازد. وزن خشک بیشتر خردل هندی نسبت به کلزا در شرایط تنش، به دلیل برتری دوام سطح برگ آن نسبت به کلزا بود. این مزیت خردل‌هندی، مستلزم فشار آماس سلول و برگ بالاتر است. همبستگی مثبت و معنی‌دار میان فشار آماس و دوام سطح برگ و فشار آماس و سرعت رشد محصول، نشان داد که بالاتر بودن پتانسیل آب، RWC و فشار آماس در شرایط تنش، منجر به افزایش دوام سطح برگ و افزایش سرعت رشد محصول و ماده خشک بالاتر می‌شود. در کلزا، پتاس عملکرد دانه در شرایط تنش خشکی به وسیله تجمع ماده خشک در قبل از اوج گل‌دهی تعیین می‌شود. هر گیاهی که تجمع ماده خشکش قبل از اوج گل‌دهی در شرایط تنش بیشتر باشد، عملکرد دانه بیشتری تولید می‌کند (Wright et al., 1996). کومار و همکاران (1993) مشاهده نمودند که در کلزا، هدایت روزنه‌ای به طور نزدیکی با RWC و فشار آماس (تورگر) در شرایط خشکی در ارتباط می‌باشد. بنابراین، کاهش RWC در شرایط کمبود آب منجر به کاهش هدایت روزنه‌ای و ورود CO2 گردیده و در نهایت موجب کاهش فتوسنتز می‌گردد (Kumar et al., 1993). کومار و الستون (1993)، در بررسی اثرات خشکی بر گونه‌های جنس براسیکا مشاهده کردند که گیاهان با تنظیم اسمزی بالاتر به هنگام تنش خشکی، محتوای نسبی آب برگ را در حد بالاتری حفظ می‌کنند و پس از آن، برگ‌ها تورم بالاتری را خواهند داشت. این حالت به هدایت بالاتر برگی و در نهایت، حتی در پتانسیل‌های آبی پایین نیز می‌تواند به افزایش فعالیت فتوسنتزی منجر شود. در نتیجه، برگ‌ها با پتانسیل آبی اندک در دوره‌های طولانی‌تر خشکی، بقای خود را حفظ می‌کنند. به علاوه، افزایش تحمل به پسابیدگی به برگ‌ها اجازه می‌دهد تا در شرایط تنش باقی بمانند و بتوانند پس از برطرف شدن تنش به رشد خود ادامه دهند (Kumar and Elston, 1993). بررسی پاسخ ژنوتیپ‌های مختلف به تنش کمبود آب در مراحل حساس از رشد گیاه در گزینش ارقام متحمل به کم آبی بسیار با ارزش است. این موضوع با عنایت به پژوهش‌های اخیر در عرصه اصلاح نباتات مولکولی از اهمیت بیشتری برخوردار است. چون با شناسایی ارقام مقاوم و حساس از نظر صفات درگیر در مقاومت به خشکی می‌توان نسبت به تلاقی والدین مناسب و تهیه جوامع به تفرق ژنتیکی برای مکان‌یابی ژن‌های کنترل کننده صفات کمی اقدام نمود.

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است


دانلود با لینک مستقیم


دانلود پایان نامه بررسی فیزیولوژیک تحمل به تنش کم آبی در ژنوتیپ های بهاره کلزا

اختصاصی از کوشا فایل دانلود پایان نامه بررسی فیزیولوژیک تحمل به تنش کم آبی در ژنوتیپ های بهاره کلزا دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه بررسی فیزیولوژیک تحمل به تنش کم آبی در ژنوتیپ های بهاره کلزا


دانلود پایان نامه بررسی فیزیولوژیک تحمل به تنش کم آبی در ژنوتیپ های بهاره کلزا

بررسی فیزیولوژیک تحمل به تنش کم‌آبی در ژنوتیپ‌های بهارة کلزا

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب* 

فرمت فایل:Word(قابل ویرایش و آماده پرینت)

تعداد صفحه:37

فهرست مطالب :

چکیده ۳

مقدمه ۵

مواد و روش‌ها ۱۲

نتایج و بحث ۱۸

نتیجه‌گیری کلی ۳۲

جدول ۱- مشخصات اقلیمی محل تحقیق ۳۳

جدول ۲- خلاصه تجزیه واریانس تاثیر تیمارهای ابیاری و رقم بر صفات فیزیولوژیک برگی، عملکرد و اجزای عملکرد کلزا ۳۴

جدول ۳- مقایسه میانگین صفات فیزیولوژیک برگی، عملکرد و اجزای عملکرد کلزا در ژنوتیپ‌ها ۳۴

جدول ۴- مقایسه میانگین صفات فیزیولوژیک برگی، عملکرد دانه، اجزای عملکرد کلزا در سطوح مختلف ابیاری و رقم ۳۵

جدول ۵- مقایسه ژنوتیپ‌های کلزا توسط شاخص تحمل به تنش فرناندز در شدت تنش (۱۶۰۲۵/۰ SI=). 35

جدول ۶- مقایسه میانگین صفات فیزیولوژیک برگی، عملکرد و اجزاء عملکرد کلزا در سطوح مختلف ابیاری ۳۵

منابع مورد استفاده ۳۷

چکیده :

به منظور بررسی اثر تنش کم‌آبی در مرحله رشد زایشی بر صفات زراعی و فیزیولوژیک ژنوتیپ‌های کلزا، آزمایشی به صورت کرت‌های خرد شده در قالب طرح پایه بلوک‌های کامل تصادفی در چهار تکرار در سال 1382 در مزرعه تحقیقاتی مؤسسه تقحیقات اصلاح و تهیه نهال و بذر کرج اجرا شد. در این آزمایش، آبیاری به عنوان عامل اصلی در دو سطح آبیاری معمول براساس 80 میلی تبخیر از تشتک کلاس A (شاهد) و تنش کم‌آبی (قطع آبیاری از مرحله ساقه‌دهی به بعد تا مرحله بلوغ فیزیولوژیکی) و ژنوتیپ‌های بهاره کلزا به عنوان عامل فرعی در 10 سطح شامل اوگلا، نوزده- اچ، هایولا 401 (کانادا)، هایولا 401 (صفی‌آباد)، هایولا 401 (برازجان)، سین-3، هایولا 420، آپشن 500، هایولا 308 و کوانتوم بودند. نتایج حاصل نشان داد که قطع آبیاری از مرحله ساقه‌دهی به بعد، تأثیر نامطلوبی بر فعالیت‌های رشدی، عملکرد و اجزاء عملکرد داشت. در میان اجزاء عملکرد دانه، کاهش وزن هزار دانه (8 درصد) و به ویژه تعداد دانه در خورجین (3/11 درصد)، بیشترین سهم را در کاهش عملکرد دانه (16 درصد) ژنوتیپ‌های بهاره کلزا در شرایط تنش کم‌آبی دارا بودند. ژنوتیپ‌ها در شرایط تنش کم‌آبی میزان آمینواسید پرولین بالاتری در برگ داشتند، در حالی که میزان محتوای نسبی آب برگ و میزان کلروفیل b, a و کل در آنها پایین‌تر بود. کم‌آبی، نسبت کلروفیل a به b را افزایش داد که این امر ناشی از کاهش بیشتر میزان کلروفیل b نسبت به کلروفیل a بود. میزان پرولین تجمع یافته در برگ در شرایط تنش کم‌آبی، بیان‌گر میزان خسارت وارده به ژنوتیپ‌ها بوده و ارتباطی با تحمل به تنش نداشت. همچنین، کاهش میزان محتوای نسبی آب برگ در ژنوتیپ‌های حساس به کم‌آبی بیشتر بود. ژنوتیپ‌هایی که در شرایط تنش کم‌آبی، محتوای نسبی آب برگ خود را به میزان بالاتری حفظ نمودند، عملکرد دانه بالاتری را تولید نمودند. بر پایه نتایج، این گونه استنباط می‌شود که ژنوتیپ‌های سین- 3، نوزده- 1چ، هایولا 420، هایولا 401 (برازجان) و هایولا 401 (کانادا) با شاخص تحمل به تنش بالاتر نسبت به سایر ژنوتیپ‌های مورد بررسی، سازگاری مناسب‌تری با تنش کم‌آبی داشتند و توانستند هم در شرایط آبیاری معمول و هم تنش کم‌آبی، میزان عملکرد دانه بالاتری را تولید نمایند. در مقابل، ژنوتیپ هایولا 308، بیشترین حساسیت را به کم‌ آبی در میان ژنوتیپ‌های مورد بررسی دارا بود.

واژه‌های کلیدی: ژنوتیپ‌های کلزا- عملکرد و اجزای عملکرد- تنش کم‌ آبی- پرولین- کلروفیل- محتوای نسبی آب برگ.

مقدمه

در حدود 40 درصد از اراضی کره زمین در مناطق خشک و نیمه خشک قرار دارند
(Meigs, 1953). در این مناطق، آب محدودیت اصلی بوده و خشکی از جمله مهمترین عوامل القاء کننده تنش در گیاهان زراعی به حساب می‌آید. متأسفانه کمبود آب، تنها به این مناطق محدود نشده و گاهی در سایر نقاط هم توزیع نامنظم باران دوره‌های دشواری را برای رشد گیاه ایجاد می‌نماید. چنین تنشی بر روی عملکرد محصول اثر گذاشته و اغلب باعث ایجاد افت در آن می‌گردد. در شرایط تنش خشکی، پتانسیل آب برگ و مقدار آن نسبی برگ (LRWC) کاهش پیدا کرده و فرآیندهایی نظیر فتوسنتز، توسعه برگ و نیز تراکم و اندازه روزنه‌ها تحت تأثیر قرار می‌گیرند

(Sierts et al., 1987; Sloan et al., 1990).

کاهش رطوبت در مراحل حساس زیستی گیاه، تغییرات و دگرگونی‌هایی را ایجاد می‌نماید. ماهیت دینامیک وضعیت آبی گیاه، در برگیرنده وابستگی اثرات تنش خشکی به عواملی مانند شدت، دوام و زمان تنش در طول انتوژنی و نیز سایر متغیرهای محیطی است که این امر پیچیدگی خاصی را در پاسخ گیاه ایجاد می‌کند (Chavan et al., 1990). بدین ترتیب، مقاومت و یا تحمل خشکی از جنبه‌های فیزیولوژیک و اصلاحی مهم تلقی می‌شود. در این راستا، هدایت روزنه کمتر، توانایی برداشت آب از خاکی با رطوبت کم، حفظ پتانسیل آب و میزان آب نسبی برگ (Blum and Mayer, 1999) از طریق ریشه‌های عمیق و منشعب، تورم مثبت برگ در پتانسیل‌های آبی پایین و فرآیندهای مرتبط با تورم و تجمع امینواسیدهایی همچون پرولین، بتائین و … در گیاه جهت تنظیم اسمزی، جزء ساز و کارهای مهم محسوب می‌گردند (Fukei and Cooper, 1995; Kumar and Singh, 1998; Niknam and Turner, 1999).

زراعت کلزا در میان دانه‌های روغنی، با توجه به شرایط آب و هوایی ایران پدیده‌ای جدید به شمار آمده و نقطه امیدی برای تأمین روغن مورد نیز محسوب می‌شود (بی‌نام، 1377). دانه‌های کلزا دارای درصد قابل توجهی روغن (45- 40 درصد) بوده و منبع با ارزش برای تأمین روغن خوراکی و نیز مصارف صنعتی می‌باشد. همچنین، پس از استخراج روغن، کنجاله آن از 26 تا 44 درصد پروتئین به طور معمول برخوردار است. کلزا نیز همانند بسیاری از گیاهان زراعی روغنی از تنش کم‌آبی متأثر می‌شود و بسته به وضعیت آبی در مراحل ویژه‌ای از فنولوژی خود به ویژه دوره رشد زایشی، کمیت و کیفیتش تحت تأثیر قرار می‌گیرد. علت این امر به احتمال زیاد تغییر در تظاهر ژن‌های کنترل کننده صفات کیفی دانه می‌باشد (Strocher et al., 1995). در بررسی تیمارهای تنش خشکی (تنش در ابتدای رشد رویشی، اواخر رشد رویشی، مرحله گل‌دهی) بر روی ارقام کلزا مشاهده شد که تنش خشکی به طور معنی‌داری تعداد خورجین در هر گیاه، تعداد دانه در هر خورجین و عملکرد دانه را کاهش داد. کاهش عملکرد دانه عمدتاً از طریق کاهش تعداد خورجین در گیاه و بذر در هر خورجین بود. کمترین تعداد خورجین و دانه در خورجین مربوط به گیاهان تنش دیده در مرحله گل‌دهی بود. کاهش وزن دانه نیز در تیمارهای تنش خشکی اعمال شده در اواخر دوره رشد بیشتر بود. کاهش سطح برگ نیز فقط در تیمارهای تنش در اواخر رشد رویشی و گل‌دهی مشاهده شد. در بررسی پایداری غشاء سلولی در شرایط خشکی مشاهده شد که این عامل نسبت به گیاهان شاهد بالاتر است. این افزایش به نظر می‌رسد که یک نوع مکانیزم سازگاری جهت تحمل به تنش خشکی در کلزا باشد. درجه حرارت برگ نیز در گیاهان تنش دیده 1 تا 2 درجه سانتی‌گراد نسبت به شاهد بالاتر بود. درجه حرارت بالاتر برگ، نشانه هدایت روزنه‌ای پایین‌تر و تبادل گازی کمتر در برگ کلزا می‌باشد. کاهش عمکلرد دانه مربوط به کاهش در هدایت روزنه‌ای و فتوسنتز برگ بود. به نظر می‌رسد که تنش خشکی به مدت 4 تا 5 روز در طی رشد رویشی برای عملکرد دانه کلزا کمتر مضر باشد چون گیاهان تا حد زیادی بهبود می‌یابند. در مقابل، تنش خشکی دیرهنگام، به دلیل عدم بهبود کافی منجر به کاهش بیشتر عملکرد دانه می‌شود (Hashem et al., 1998). پتانسیل عملکرد دانه در کلزا در هنگام اعمال تنش خشکی و تنش‌های حرارتی بالا به هنگام دوره گل‌دهی و مراحل قبل از آن نسبت به دیگر مراحل رشدی، کاهش بیشتری می‌یابد. در کلزا، دوره رشد زایشی (اواخر تشکیل جوانه تا ابتدای تشکیل بذر)، حساس‌ترین مرحله به تنش آبی و درجه حرارت بالا است. کلزا عادت رشدی نامحدودی داشته و می‌تواند در شرایط تنش خشکی به طور ذاتی بهبود یابد. این بهبود از طریق افزایش شاخه‌دهی و افزایش کارایی خورجین‌های باقی مانده صورت می‌گیرد. در بررسی اثر تیمارهای حرارتی و رطوبتی (تنش آبی بالا، آبیاری تا 50 درصد آب موجود خاک و تنش آبی ملایم، آبیاری تا 90


درصد آب موجود خاک) بر روی ارقام کلزا و خردل هندی مشاهده شد که تنش آبی، عملکرد دانه را فقط در شاخه فرعی و در گیاه کاهش می‌دهد، در حالی که تأثیری بر عملکرد دانه در ساقه اصلی نداشت. در این آزمایش مشاهده شد که اثر تنش آبی بر عملکرد دانه، عمدتاً مربوط به تغییر صفات هیدرولیکی و غیرهیدرولیکی همانند کلروفیل است. تنش آبی بالا، وزن دانه را حدود 3 درصد نسبت به شاهد کاهش داد (Gan et al., 2004). تنظیم اسمزی، نقش معنی‌دار و مهمی در حفظ پتانسیل آماس و پروسه‌های وابسته به فشار آماس همانند باز شدن روزنه‌ها، فتوسنتز، رشد قسمت هوایی و گسترش ریشه‌ها به اعماق خاک دارد. کوماروسینک (1998) نشان دادند که بیش از 50 درصد کل آب مصرفی به وسیله گیاهان جنس براسیکا که دارا تنظیم اسمزی بالاتر می‌باشند، از لایه‌های پایین‌تر خاک (180-90 سانتی‌متر) جذب می‌شود، در حالی که در گیاهان براسیکای دارای تنظیم اسمزی پایین‌تر، این قضیه برعکس است. در گونه‌های جنس براسیکا، تنظیم اسمزی رابطه مثبتی با عملکرد دانه دارد. همچنین، رابطه نزدیکی میان تنظیم اسمزی و هدایت روزنه‌ای و درجه حرارت برگ در گونه‌های این جنس وجود دارد. کاهش در پتانسیل اسمزی همراه با کاهش محتوای نسبی آب برگ در ژنوتیپ‌های دارای تنظیم اسمزی کمتر نسب به ژنوتیپ‌های دارای تنظیم اسمزی بالاتر کوچکتر و کمتر بود. گیاهان با تنظیم اسمزی بالاتر، هدایت روزنه‌ای خود را بالاتر نگاه داشته و تعرق بیشتری داشتند و هدایت روزنه‌ای و عملکرد دانه بالاتری داشتند. به نظر می‌رسد که فرآیندهای بیوشیمیایی همانند تجزیه کلروفیل و دیگر رنگیزه‌های فتوسنتزی در شرایط تنش، کمتر در این گونه گیاهان تحت تأثیر قرار می‌گیرد (Kumar and Singh, 1998). در بررسی تیمارهای آبیاری (خشکی و آبیاری کامل) در مرحله چهار برگی بر ارقام کلزا و خردل هندی مشاهده شد که تنظیم اسمزی در برگ‌های در حال توسعه در هر دو گونه، دو برابر برگ‌های توسعه یافته بود. خشکی، تغییراتی در تنظیم اسمزی برگ‌های توسعه یافته تمام ژنوتیپ‌ها به دلیل تجمع نیترات (47- 42 درصد)، قندهای محلول (38- 31 درصد) و پرولین (14- 11 درصد) ایجاد نمود. در برگ‌های در حال توسعه، تجمع نیترات و یون پتاسیم همانند پرولین معنی دار بود و اهمیت بیشتری داشت. نیترات در خردل هندی بیشتر نقش داشت در حالی که در دو رقم کلزا، یون پتاسیم اهمیت بالاتری داشت. در مقابل، در برگ‌های توسعه یافته، یون نیترات و قندهای محلول، به ترتیب بیشترین اهمیت را دارا بودند. در کل، برگ‌های در حال توسعه، پتانسیل اسمزی کمتری نسبت به برگ‌های توسعه یافته داشتند. یونهای محلول در آب، منیزیم و کلسیم، سهم معنی‌داری در تنظیم اسمزی نداشتند. اسید آمینه پرولین، یک نشان‌گر مناسب برای تنظیم اسمزی در گیاهان جنس براسیکا بوده، چون در شرایط تنش، غلظت آن، سهم مستقیمی در اندازه تنظیم اسمزی در میان ارقام و برگ‌ها داشت. در این آزمایش، ارتباط یون پتاسیم، قندهای محلول و پرولین با تنظیم اسمزی خطی بود. ولی ارتباط یون نیترات خطی نبود که نشان‌گر این است که تجمع زیاد یون نیترات برای گیاه مضر است. تجمع قندهای محلول در گیاهان خشکی دیده می‌تواند از افزایش هیدرولیز نشاسته، سنتز به وسیله دیگر مسیرها و یا کاهش تبدیل به دیگر محصولات باشد. همچنین، افزایش انتقال کربوهیدرات‌ها به برگ‌ها و یا کاهش انتقال آنها از برگ‌ها می‌تواند سهم در تجمع قندهای محلول در برگ‌ها در شرایط تنش خشکی داشته باشد. کاتیون‌ها و آنیون‌های محلول در شرایط تنش نیز می‌تواند به وسیله توزیع مجدد از ساقه‌ها و دیگر بافت‌های گیاهان تحت تأثیر قرار گیرد. دلیل تجمع زیاد نیترات نیز در شرایط تنش می‌تواند کاهش در فعالیت آنزیم نیترات ردوکتاز باشد (Ma et al., 2004). در بررسی اثرات تیمارهای مختلف آبیاری بر ارقام کلزا و خردل هندی، مشاهده شد در شرایط تنش خشکی با شدت کم، خردل هندی، میزان ماده خشکش 2/1 برابر بیشتر از کلزا بود. در شرایط تنش خشکی شدید نیز وزن خشک خردل هندی دو برابر کلزا بود. شاخص سطح برگ خردل هندی نیز در هر دو تیمار آبیاری بیشتر از کلزا بود. با این حال، وزن مخصوص برگ کمتری نسبت به کلزا داشت، که این امر منجر به سطح سبز برگ بیشتر خردل هندی و رشد بهتر خردل هندی در شرایط تنش نسبت به کلزا گردید. مشخص شد که گونه‌های براسیکا، وزن مخصوص برگ خود را در شرایط تنش خشکی شدید افزایش می‌دهند که منجر به افزایش کارایی مصرف آب گیاه به وسیله کاهش سطح برگ می‌شود. همچنین، کاهش وزن برگ، منجر به افزایش فشار آماس برگ شد. این نگهداری فشار آماس در شرایط تنش ممکن است جریانی را که باعث افزایش در وزن مخصوص برگ می‌شود را به تأخیر اندازد. وزن خشک بیشتر خردل هندی نسبت به کلزا در شرایط تنش، به دلیل برتری دوام سطح برگ آن نسبت به کلزا بود. این مزیت خردل‌هندی، مستلزم فشار آماس سلول و برگ بالاتر است. همبستگی مثبت و معنی‌دار میان فشار آماس و دوام سطح برگ و فشار آماس و سرعت رشد محصول، نشان داد که بالاتر بودن پتانسیل آب، RWC و فشار آماس در شرایط تنش، منجر به افزایش دوام سطح برگ و افزایش سرعت رشد محصول و ماده خشک بالاتر می‌شود. در کلزا، پتاس عملکرد دانه در شرایط تنش خشکی به وسیله تجمع ماده خشک در قبل از اوج گل‌دهی تعیین می‌شود. هر گیاهی که تجمع ماده خشکش قبل از اوج گل‌دهی در شرایط تنش بیشتر باشد، عملکرد دانه بیشتری تولید می‌کند (Wright et al., 1996). کومار و همکاران (1993) مشاهده نمودند که در کلزا، هدایت روزنه‌ای به طور نزدیکی با RWC و فشار آماس (تورگر) در شرایط خشکی در ارتباط می‌باشد. بنابراین، کاهش RWC در شرایط کمبود آب منجر به کاهش هدایت روزنه‌ای و ورود CO2 گردیده و در نهایت موجب کاهش فتوسنتز می‌گردد (Kumar et al., 1993). کومار و الستون (1993)، در بررسی اثرات خشکی بر گونه‌های جنس براسیکا مشاهده کردند که گیاهان با تنظیم اسمزی بالاتر به هنگام تنش خشکی، محتوای نسبی آب برگ را در حد بالاتری حفظ می‌کنند و پس از آن، برگ‌ها تورم بالاتری را خواهند داشت. این حالت به هدایت بالاتر برگی و در نهایت، حتی در پتانسیل‌های آبی پایین نیز می‌تواند به افزایش فعالیت فتوسنتزی منجر شود. در نتیجه، برگ‌ها با پتانسیل آبی اندک در دوره‌های طولانی‌تر خشکی، بقای خود را حفظ می‌کنند. به علاوه، افزایش تحمل به پسابیدگی به برگ‌ها اجازه می‌دهد تا در شرایط تنش باقی بمانند و بتوانند پس از برطرف شدن تنش به رشد خود ادامه دهند (Kumar and Elston, 1993). بررسی پاسخ ژنوتیپ‌های مختلف به تنش کمبود آب در مراحل حساس از رشد گیاه در گزینش ارقام متحمل به کم آبی بسیار با ارزش است. این موضوع با عنایت به پژوهش‌های اخیر در عرصه اصلاح نباتات مولکولی از اهمیت بیشتری برخوردار است. چون با شناسایی ارقام مقاوم و حساس از نظر صفات درگیر در مقاومت به خشکی می‌توان نسبت به تلاقی والدین مناسب و تهیه جوامع به تفرق ژنتیکی برای مکان‌یابی ژن‌های کنترل کننده صفات کمی اقدام نمود.


مواد و روش‌ها

محل اجرای آزمایش در مزرعه 400 هکتاری مؤسسه تحقیقات اصلاح و تهیه نهال و بذر کرج انتخاب گردید. طول جغرافیایی محل اجرای آزمایش 59 درجه و 35 دقیقه شمالی و عرض جغرافیایی آن 75 درجه و 50 دقیقه شرقی و ارتفاع آن از سطح دریا 1313 متر می‌باشد. براساس آمار آب و هوایی و با توجه به منحنی آمبروترمیک، منطقه مورد نظر با داشتن 150 تا 160 و گاهی تا 200 روز خشک جزء مناطق آب و هوایی مدیترانه‌ای گرم و خشک و با داشتن زمستان سرد و مرطوب و تابستان گرم و خشک جزء مناطق نیمه خشک محسوب می‌شود. براساس میانگین داده‌های سی ساله اخیر اداره هواشناسی کرج، متوسط بارندگی سالیانه منطقه 243 میلی‌متر بوده و بارندگی عمدتاً در اواخر پاییز و اوایل بهار روی می‌دهد. میزان کل بارندگی در طول فصل زراعی حدود 4/302 میلی‌متر بود. بیشترین میزان بارندگی در آذر ماه با 4/106 میلی‌متر گزارش شد. وضعیت عمومی آب و هوای منطقه در سال زراعی اجرای آزمایش در جدول یک درج گردیده است. قبل از آماده‌سازی زمین و مصرف کودهای شیمایی از خاک نقاط مزرعه در دو عمق 30-0 و 60-30 سانتی‌متری جهت تعیین خصوصیات فیزیکی و شیمیایی خاک، نمونه‌برداری و سپس به آزمایشگاه منتقل شدند. آبیاری و رقم تیمارهای آزمایش بودند. آبیاری در دو سطح، شامل آبیاری معمول (آبیاری براساس 80 میلی‌متر تبخیر از تشتک کلاس A) و دیگری تنش کم‌آبی به صورت قطع آبیاری در مرحله رشد زایشی (ساقه‌دهی به بعد) بود. ارقام نیز در 10 سطح که تماماً دارای تیپ رشدی بهاره بودند. این ارقام عبارت بودند از: اوگلا (ogla)، نوزده- اچ (19-H)، هایولا 401 (کانادا) (Hyola 401 (c))، هایولا 401 (صفی‌آباد) (Hyola 401 (s))، هایولا 401 (برازجان) (Hyola 401 (b))، هایولا 420 (Hyola 420)، سین-3 (Syn- 3)، آپشن 500 (option 500)، هایولا 308 (Hyola 308) و کوانتوم (Quantum) بودند که به ترتیب مبدأ آنها از کشورهای آلمان، پاکستان، کانادا، صفی‌آباد، برازجان، کانادا، ایران، کانادا، کانادا و آلمان بود. همچنین، رقم کوانتوم به عنوان شاهد آزمایشی در نظر گرفته شد. این آزمایش در سال زراعی 83-1382 به صورت کرت‌های خرد شده در قالب طرح پایه بلوک‌های کامل تصادفی در چهار تکرار اجرا گردید. سطوح آبیاری در کرت‌های اصلی و ارقام در کرت‌های فرعی قرار گرفتند. تعداد کل کرت‌های آزمایشی در این طرح برابر 80 بود. مساحت کل مزرعه آزمایشی حدود 1350 مترمربع بود. در مزرعه آزمایشی در سال قبل گندم کشت شده بود. عملیات تهیه زمین شامل آبیاری زمین و پس از گاورو شدن، انجام شخم پاییزه به وسیله گاوآهن برگردان‌دار، سپس عناصر کودی به همراه 5/2 لیتر در هکتار علف‌کش ترفلان همراه با دو دیسک عمود بر هم و سبک با خاک مخلوط گردیدند. سپس مزرعه به وسیله فاروئر به صورت جوی و پشته درآمد. فاصله جوی‌ها از یکدیگر 60 سانتی‌متر بود. ابعاد هر کرت آزمایشی m 2/1 * m 5 بود. هر کرت آزمایشی شامل 4 خط 5 متری با فاصله خطوط 30 سانتی‌متر و فاصله بوته روی خط 4 سانتی‌متر بود. بین ردیف‌ها نیز حدود 5 متر فاصله تعبیه شد. در تاریخ 16 مهرماه 1381 کلیه ارقام کشت گردیدند. عملیات کاشت با دست انجام گرفت. عملیات تنک، واکاری و کوددهی برای هر یک از تیمارهای آزمایشی به طور جداگانه انجام پذیرفت. به منظور تعیین تراکم مناسب، درمرحله 4 تا 6 برگی اقدام به تنک گیاهان و حذف علف های هرز گردید. آبیاری برای تیمار آبیاری معمول در هر بار آبیاری، براساس 80 میلی‌متر تبخیر از تشتک کلاس A صورت گرفت.

و...

NikoFile


دانلود با لینک مستقیم