کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

دانلود مقاله اثر وزن مولکولی و DD کیتین و کیتوسان روی فرآیند ترمیم زخم

اختصاصی از کوشا فایل دانلود مقاله اثر وزن مولکولی و DD کیتین و کیتوسان روی فرآیند ترمیم زخم دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله اثر وزن مولکولی و DD کیتین و کیتوسان روی فرآیند ترمیم زخم


دانلود مقاله اثر  وزن مولکولی و DD کیتین و کیتوسان روی فرآیند ترمیم زخم

خلاصه :

در این مقاله اثر کیتین و کیتوسان روی فرآیند ترمیم زخم ها و برش های خطی در موش ها بررسی شده است . تحکام شکاف زخم در گروههای کیتوسان (cos),D-glucosamine (GL­c­NAc­­)]   N-acetyl –D-glucosamine و Chiti – aligosaccharide (NACOS) و کیتین ) بیشتر بود .

فعالیت آنزیم های کلاژناز هم در گروه های کیتوسان بیشتر از گروههای کتین است .

میزان تغییرات در مورد تجمع و استحکام و فعالیت آنزیم های کلاژ ناز در نمونه های مختلف زیاد نبود.

دریافته های بافت شناسی رشته های کلاژن به صورت عمود بر خط برش در گروه های (NACOS,COS) رشد کردند و در گروههای کیتوسان تعدادی فیبروبلاست فعال شده در اطراف زخم دیده شد.

در DD های بالا استحکام خط برش ترمیم یافته بیشتر است مچنین سمیزان فیبروبلاست های ظاهر شده اطراف زخم .

مقدمه :

کیتین و کیتوسان تعدادی خواص بیولوژیکی مفید در کاربرد هایی نظیر : 1- پوشش زخم ها 2- زیست سازگاری بالا 3-قابلیت زیست ستخریب پذیری 4- عامل انعقاد خون 5- عامل ضد عفونت 6- عامل تسریع در ترمیم زخم در این تحقیق روی اثر کیتین و کیتوسان روی ترمیم زخم کار شده و بهایننتیجه رسیده که این موارد ست های ترمیم و سلول های (PMN) Polymorphonuclear و فیبروبلاست ها و سلول های اندوتلیال رگ ها را فعال می کنند .

وقتی کیتین و کیتوسان در بدن استفاده می شوند توسط آنزیم های کیتیناز و کیتوساناز خریب می شوند و متعاقباٌ به متومر و الیگومر هایشان تبدیلمی شوند .

شامل 12 صفحه فایل word


دانلود با لینک مستقیم

دانلود پروژه ژنتیک مولکولی

اختصاصی از کوشا فایل دانلود پروژه ژنتیک مولکولی دانلود با لینک مستقیم و پرسرعت .

دانلود پروژه ژنتیک مولکولی


...

دانلود با لینک مستقیم

دانلود مقاله الکترونیک مولکولی

اختصاصی از کوشا فایل دانلود مقاله الکترونیک مولکولی دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله الکترونیک مولکولی


 دانلود مقاله الکترونیک مولکولی

شرح مختصر : الکترونیک مولکولی یک رویکرد جدید است که به مواد اولیه و اصول عملکرد جدید نیاز دارد و می‌توان گفت انگیزه‌ای برای شناخت و استفاده از آنچه در مولکول‌های مواد اتفاق می‌افتد است. در مقیاس‌های کوچک تر از نانو، ایده استفاده از یک یا چند مولکول به‌عنوان یک سوئیچ به‌نظر بسیار جالب‌تر از بررسی بن‌بست‌های ماسفتی می‌باشد. این کار علاوه بر کوچک شدن ابعاد سرعت را بسیار زیاد کرده است همچنین ارزان‌تر است و بالطبع آن روش‌ها و پیچیدگی‌ها بسیار دشوار می‌شود. (الکترونیک مولکولی هنوز در حال تحقیق در مورد روش‌های ساخت می‌باشد. که به‌نظر می‌رسد به زودی بر آن غلبه و به سمت ساخت مدار مجتمع با این تکنولوژی برود)

همان طور که می‌دانیم روش لیتوگرافی نوری برای ساخت مدارات الکترونیکی مجتمع با چالش‌های اساسی و جدی روبرو شده است. محدودیت‌های فناوری از یک سو و چالش‌های کوانتومی از سوی دیگر توسعه‌ی نانوالکترونیک را با دشواری روبرو کرده است . در این میان دانشمندان به ایده‌ها و روش‌های جایگزین و جدیدی می‌اندیشند که محدودیت‌های روش لیتوگرافی نوری را ندارد. یکی از این روش‌ها، ساخت و استفاده از مولکول‌هایی است که رفتاری مشابه رفتار کلید زدن ترانزیستورها داشته باشند. در واقع دانشمندان قصد دارند با طراحی، ساخت و استفاده از این مولکلول‌ها، آن‌ها را جایگزین ترانزیستورهای سیلیکونی کنند. این ایده را الکترونیک مولکولی می‌گوییم. این رفتار می‌تواند مبنایی برای پردازش اطلاعات در رایانه‌ها و ذخیره‌ی اطلاعات در حافظه‌ها قرار گیرد .

مولکول‌هایی که در الکترونیک مولکولی مورد استفاده قرار می‌گیرند بایستی شرایطی داشته باشند. این مولکول‌ها باید دارای دو شکل متفاوت باشند که توسط یک محرک خارجی نظیر نور یا ولتاژ تغییر شکل دهد. این تغییر شکل باید برگشت‌پذیر هم باشد. در واقع مولکول در یک حالت به عنوان صفر (zero) و در یک حالت به عنوان یک (one) رفتار می‌کند. رفتار برگشت‌پذیری مولکول هم باید بسیار سریع باشد به گونه‌ای که بتواند در مدارات الکترونیکی مجتمع، مفید واقع شود. همچنین پایداری و مخصوصا پایداریِ گرمایی نیز عامل مهمی است. یعنی این مولکول‌ها در برابر تغییرات دمایی نباید از شکلی به شکل دیگر تغییر شکل دهند. چرا که در مدارات مجتمع محدوده‌ی تغییرات دمایی بسیار زیاد است و در صورت تغییر شکل مولکول‌ها، اطلاعات آن‌ها از دست می‌رود.

مثلا مولکول آزوبنزن ، در ابتدا نمونه‌ای مناسب به نظر می‌رسد. مولکول آزوبنزن دارای دو ایزومر سیس و ترانس است که هر کدام دارای دو طول متفاوت است. با تابیدن نور فرابنفش با طول موج ۳۱۳ نانومتر، ایزومر ترانس به ایزومر سیس تغییر شکل می‌دهد و با تابیدن نور فرابنفش با طول موج بیش‌تر از ۳۸۰ نانومتر، ایزومر سیس به ایزومر ترانس تغییر شکل می‌دهد. بنابراین در مدار الکتریکی یکی از ایزومرها می‌تواند به عنوان صفر و دیگری به عنوان یک رفتار کند. لیکن مشکل آزوبنزن عدم پایداری گرمایی آن است. در واقع ایزومر سیس آزوبنزن از نظر گرمایی پایدار نیست و اندک گرمایشی موجب تغییر شکل آن به ایزومر ترانس می‌شود.

البته این رفتار در مولکول مذکور در دمای ۶۰ کلوین مشاهده می‌شود، یعنی تقریبا ۲۱۳- درجه‌ی سلسیوس و در دمای اتاق ظاهر نمی‌شود. همان طور که مشاهده می‌کنید این دما بسیار پایین و دسترسی به آن دشوار است. لذا استفاده از آن در شرایط دمای معمولی مستلزم توسعه‌ی بیش‌تر این دانش است. همچنین لازم به یادآوری است که نشان دادن این که یک مولکول می‌تواند جریان الکتریکی را هدایت کند و رسانایی و عدم رسانایی آن قابل کنترل است، برای توسعه‌ی دانش الکترونیک کفایت نمی‌کند. آن چه اکنون در اختیار داریم یک کلید مولکولی بسیار کوچک و در ابعاد چند نانومتر است که جریان الکتریکی عبوری از آن با استفاده از یک ولتاژ قابل کنترل است. مزیت اصلی آن نسبت به ترانزیستورهای سیلیکونی ابعاد کوچک‌ترِ آن است. لیکن توسعه‌ی رایانه‌ها و استفاده از الکترونیک مولکولی در صنایع الکترونیک و رایانه مستلزم اتصال این مولکول‌ها به یکدیگر و ساخت گِیت‌های منطقی است همچنین روش‌های ساخت و تولید آن در مقیاس انبوه نیز چالشی است که باید قبل از توسعه‌ی الکترونیک مولکولی حل شود

فهرست :

تعریف کلی از الکترونیک تک مولکولی

مزایا و معایب نسبت به دیگر فناوری ها

برنامه های کاربردی الکترونیک تک مولکولی

بررسی و مقایسه اندازه تراشه ها

هدایت یک اتصال مولکولی

ابزارهای کاربردی برای بررسی پارامترها و ساختارالکتریکی

انتقال الکترون از طریق تک مولکول (رسانایی)

ترازهای فرمی از الکترودها و مرز اوربیتال مولکولی

نحوه ی برقراری اتصالات در الکترونیک مولکولی

سیم های مولکولی

دیود های مولکولی

ریکتیفایر مولکولی

ترانزیستور مولکولی

سوئیچ مولکولی

گیت های منطقی مولکولی


دانلود با لینک مستقیم

نگرشهای مولکولی و فیزیولوژیکی به تحمل خشکسالی

اختصاصی از کوشا فایل نگرشهای مولکولی و فیزیولوژیکی به تحمل خشکسالی دانلود با لینک مستقیم و پرسرعت .

نگرشهای مولکولی و فیزیولوژیکی به تحمل خشکسالی


نگرشهای مولکولی و فیزیولوژیکی به تحمل خشکسالی

نگرشهای مولکولی و فیزیولوژیکی به تحمل خشکسالی

24 صفحه در قالب word

 

 

 

 

 

نگرش های مولکولی و فیزیولوژیکی به تحمل خشکسالی

آب عامل اصلی محدود کننده در کشاورزی جهان می باشد. در کل اغلب گیاهان زراعی، حتی به یک تنش ملایم از دست دادن آب نیز به دشت حساس هستند. با وجود این، چند جنس از گیاهان مختص آفریقای جنوبی وجود دارند که قابلیت بسیار بالا برای مقاومت در برابر از دست دادن آب و خشک شدن را دارند. به این جنس ها، گیاهان قیامت "resurrection Plants" گفته می شود.

ما از Xerophta viscose به عنوان نمونه گیاهان قیامت (تک لپه ای) استفاده کردیم تا ژن های مرتبط با تحمل فشار اسمزی را استخراج کنیم. چندین ژن که بصورت متمایز بیان می شوند، در سطوح بیوشیمایی و ملکولی مورد مطالعه قرار گرفتند. این ژنها همان هایی هستند که قابلیت عملکردی خوبی به اشریشیاکلی در شرایط تنش اسمزی می دهند. ما در این مقاله از این آزمایش به عنوان پایه ای برای بحث درباره نگرش های ملکولی و فیزیولوژیکی به تحل خشکسالی، استفاده خواهیم کرد.

(osmoprotectants)، آبسیزیک اسید (ABA) و عوامل رونویسی

مقدمه:

آب یک جزء مهم و اساسی در متابولیسم تمام ارگانیسم های رانده است. آب، انجام شدن بسیاری از واکنش های حیاتی زیست شناختی را بوسیله دارا بودن خصوصیاتی نظیر حلالیت، فراهم کردن محیط انتقال، سرد کردن محیط از راه تبخیر، تسهیل می کند. (Bohert et al., 1995).

در گیاهان و سایر فتواتوتروف ها، آب نقش مهمی در فراهم کردن انرژی مورد نیاز برای پیشبرد فتوسنتز دارد. ملکولهای آب، طی فرآیندی بنام اتولیز شکسته شده و الکترونهایی بر جای می گذارند که این الکترونها برای به چرخه درآوردن انرژی نوری ذخیره شده در فتوسیستم II ضروری می باشند. (Salisbury an Ross, 1992a)

یکی از پیامدهای مهم تنش خشکی، از دست دادن آب پروتوپلاسمی است که منجر به افزایش غلظت یونهایی مانند  می شود. در غلظت های بالا چنین یونهایی به طور موثری مانع عملکرد متابولیکی می شوند (Hartung et al., 1998). همچنین افزایش غلظت اجزای تشکیل دهنده پروتوپلاسم و از دست دادن آب سلول باعث ایجاد وضعیت خاصی به نام «حالت شیشه ای: glassy state» می شود. در این حالت، ویسکوزیته مایع موجود در داخل سلول بیشتر می شود که در نتیجه باعث افزایش احتمال برهم کنش های مولکولی و واسرشت شدن پروتئین ها و فیوژن غشا می شوند. (Hartung et la., 1998; Hoekstra et al., 2001).

بنابراین گیاه برای حفظ تورگور سلولی و عملکردهای متابولیکی نیاز به بیان ژنهای خاصی دارد. گروه تحقیقاتی ما می کوشد گیاهان تراژنی زراعی و همچنین وحشی را که قادر به مقاوت در برابر خشکی باشند، ایجاد کند. منبع ژنها گیاهی به نام Xerophyta viscose (Baker) از خانواده Vello=iaceae است که متعلق به گروه کوچکی از نهاندانگان می باشد. این گیاه به علت قابلیت فوق العاده تحمل خشکی به «گیاه قیامت» ملقب شده است (Farrant, 2000, Gaff, 1977).

این گیاه (X. viscose) تا 5 درصد محتوای آب نسبی (RWC) می تواند آب از دست دهد و آبیاری مجدد این گیاه تقریباً به مدت 80 ساعت آنرا سیراب کرده و گیاه فعالیت های یزیولوژیکی خود را از سر می گیرد. (Sherwin and Farront, 1998).

ژنهایی که در این مقاله مورد بررسی قرار خواهند گرفت، شامل موارد زیر هستند: (XVPer 1 (کد کننده یک آنتی اکسیدان)، VATP1XV (کد کننده یک پروتئین زیر واحدی C مانند از آنزیم –H+ آدنوزین تری فسفاتاز)، XVGOLS (کد کننده یک گالاکتینول سنتاز)، ALDRXV4 (کد کننده یک آلدوز ردوکتاز)، XVSAP1 (کد کننده یک پروتئین متصل شونده به غشای سلولی) و DREB1A (کد کننده یک عامل رونویسی). برای تعیین اثرات ناشی از بیان این ژنها در تک لپه ای ها، آنها را به گیاه علفی بنام Digitaria sanguinalis انتقال دادیم و برای انتقال این ژنها خودمان یک سیستم انتقال طراحی کرده ایم (chen et al., 1998). سپس اگر نتایج مثبت باشند، ژنها به محصولات زراعی مانند ذرت (Zea mays) نیز منتقل خواهند شد. برای انجام چنین کاری بر روی دو لپه ای ها، ما نخست آن ژن ها را به Arabidopsis thaliana و Nicotina tobacum منتقل می کنیم.

پدیده تحمل خشکی یک پدیده پیچیده است که شامل بیان سازمان یافته ژنهای زیادی است (Walters et la., 2002) به عبارت دیگر، برای بدست آوردن گیاهان مقاوم در برابر خشکی، چند ژن باید به طور همزمان بیان شوند (Co-expression).

به عنوان مثال، بیان XVPer1، که به نظر می رسد DNA را در برابر گونه های فعال اکسیژن محافظت می کند، همزمان با بیان XVSAP1، که احتمالاً از تراوایی غشا جلوگیری می کند، همراه با بیان XVGOLS و ALDRXV4 که هر دو محافظت کننده اسمزی هستند، مجموعه ای از پروتئین های مرتبط به هم را نتیجه می دهد که با همکاری یکدیگر خصوصیت مقاومت در برابر خشکی را نتیجه می دهند.

برخی تغییرات ساختاری و فیزیولوژیکی ایجاد شده در سطح سلولها و در نتیجه در تمام پیکر گیاه از آنجائیکه پاسخ گیاهان به خشکی پیچیده و مختلف است، بنظر نمی رسد که فقط یک ژن در ایجاد تحمل خشکی نقش داشته باشد. بنابراین نیاز به درک پاسخ فیزیولوژیکی گیاهان تحت شرایط کمبود آب از اهمیت خاصی برخوردار است. (رجوع شود به Alpert and Oliver, 2002; Levitt, 1980, Walters et la. 2002 برخلاف گیاهان عادی، که پتانسیل آب را بالاتر از محیط حفظ می کنند و تلاش می کنند به فعالیت خود در دوره های کمبود آب ادامه دهند، گیاهان مقاوم خشکی یک استراتژی کاملاً متفاوت را به کار می گیرند: بافت های زنده تمام آب آزاد خود را از دست می دهند و سپس به طور آنی آب در دسترس بافت ها قرار می گیرد. این توانایی غیرعادی برای بقا در فقدان شدید آب در بافتهای زنده فقط در 100 نهاندانه مشاهده شده است (Gaff, 1977). اگر چه گیاهان قیامت ارزش اقتصادی چندانی برای کشاورزی ندارند، فهم بیشتر این پدیده می تواند نگرشهایی در مکانیسم های ممکن برای بهبود مقاومت گیاهان زراعی، ایجاد کند. در واقع روشهای زیادی وجود دارد که بوسیله آنها گیاهان مختلف به خشکسالی پاسخ می دهند (خلاصه شده در نمودار 1)

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است


دانلود با لینک مستقیم

پایان نامه سنتز غربال های مولکولی سیلیکوآلومینو فسفات در ابعاد نانو و کاربردهای آن -در الکتروشیمی

اختصاصی از کوشا فایل پایان نامه سنتز غربال های مولکولی سیلیکوآلومینو فسفات در ابعاد نانو و کاربردهای آن -در الکتروشیمی دانلود با لینک مستقیم و پرسرعت .

پایان نامه سنتز غربال های مولکولی سیلیکوآلومینو فسفات در ابعاد نانو و کاربردهای آن -در الکتروشیمی


پایان نامه سنتز غربال های مولکولی سیلیکوآلومینو فسفات در ابعاد نانو و کاربردهای آن -در الکتروشیمی

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:83

فهرست مطالب:

فصل اول – مقدمه و کلیات تحقیق
    مروری کلی بر غربال مولکولی سیلیکوآلومینوفسفات    2
     زئولیت¬های طبیعی    6
    سنتز غربال¬های مولکولی    6
    اصلاح¬ غربال¬های مولکولی¬ سیلیکوآلومینوفسفاتی    9
    شناسایی غربال¬های مولکولی سیلیکوآلومینوفسفاتی    11
    روش میکروسکوپ الکترونی    11
    روش پراش اشعه  X (XRD)      12
    روش FTIR    12
    مقدمه¬ای بر پیل¬های سوختی    12
    الکترودهای اصلاح شده و فرایند الکتروکاتالیزور    15
    انواع کاتالیزورهای مورد استفاده در الکترواکسیداسیون آندی متانول    18
    الکتروکاتالیزورهای متانول در محیط اسیدی    18
1-7-2. الکتروکاتالیزورهای متانول در محیط قلیایی    18
    اندازه¬گیری الکتروشیمیایی    19
    هدف از پژوهش    19
فصل دوم – ادبیات و پیشینه تحقیق
    تاریخچه¬ی پیل سوختی    21
    مروری بر تحقیقات الکتروکاتالیزوری    22
    تاریخچه¬ی مواد غربال¬های مولکولی    23
    زئولیت¬های آلومینو سیلیکاتی و غربال¬های مولکولی سیلیسی    23
فصل سوم – روش تحقیق
    مواد اولیه و تجهیزات آزمایشگاهی    30
    مواد اولیه    30
    تجهیزات آزمایشگاهی    32
    دستگاه پتانسیواستات/گالوانواستات    32
    سنتز و ساخت    33
    سنتز نانو سیلیکوآلومینوفسفات    33
    ﺳﺎﺧﺖ اﻟﻜﺘﺮوﻛﺎﺗﺎﻟﻴزور    34
    روش ارزیابی عملکرد الکتروکاتالیزوری    35
    مقایسه الکترود مربوطه با الکترود خمیر کربن    36
فصل چهارم – محاسبات و یافته¬های تحقیق
    تعیین خصوصیات کاتالیزور¬های سنتزی    39
    آنالیز XRD    39
    آنالیز FESEM    40
    آنالیز FTIR    42
    ارزیابی عملکرد الکتروکاتالیزورها    44
    آنالیز الکتروشیمی الکترودهای اصلاح شده    47
    اکسیداسیون الکترولیت متانول در سطح الکترود اصلاح شده    54
    ارزیابی کرنوآمپرومتری    58
    بررسی عملکرد و پایداری الکترود Ni-SAPO/CPE    63
فصل پنجم – نتیجه گیری و پیشنهادات
    غربال مولکولی کریستال نانو سیلیکوآلومینوفسفات    66
    الکترود اصلاح شده با نانوسیلیکوآلومینوفسفات سنتز شده    66
    پیشنهادات    67
پیوست – منابع و ماخذ    68
چکیده انگلیسی    72

فهرست شکل‌ها

شکل1-1: واحدهای TO4 در غربال مولکولی¬های زئولیتی و آلومینوفسفاتی            3
شکل 1-2: ساختار اتمی شبکه¬های CHA(a), MFI(b), AFI(c), DON(d)            5
شکل1-3: روش سنتز قالبی و قالب¬های رایج در آن: 1. تک مولکول، 2. مولکول دوگانه دوست (دارای یک رشته‌ی آلی چربی دوست (قرمز) و یک سر آب دوست (آبی): Amphiphile))و 3. مایسل (خوشه¬ای از مولکول های دوگانه-دوست: Micelle)) و 4. مواد پیچیده¬تر، 5. یک ساختار کروی، 6. دسته¬ای از ساختارهای کروی            9
شکل 3-1: نمایی از نحوه¬ی فعالیت پتاسیواستات            32
شکل 4-1: الگوی XRD غربال مولکولی نانوساختار SAPO            39
شکل 4-2: الگوی XRDغربال مولکولی نانوساختار NiSAPO            40
شکل 4-3: تصویر SEM غربال مولکولی نانوساختار SAPO            41
شکل 4-4: تصویر SEM غربال مولکولی نانوساختار NiSAPO            42
شکل 4-5: آنالیز FTIR  غربال مولکولی نانو ساختار SAPO             43
شکل 4-6: آنالیز FTIR کاتالیزور  نیکل SAPO            43
شکل 4-7: ولتامتری چرخه¬ای الکترود الف CPE و  ب الکترود اصلاح شده 25%SAPO/CPE  در محلولmM  10 پتاسیم فری سیانید وM 1/0  KCl با سرعت اسکنmV/S   20 و pH=7........................44
شکل4-8: ولتامتری چرخه¬ای الکترود SAPO/CPE  25% در محلول  در محلولmM  10 پتاسیم فری سیانید وM 1/0  KCl در سرعت اسکن¬های بالاتر از 350 میلی ولت برثانیه و شکل الحاقی در سرعت اسکن¬های کمتر از 350 در همان شرایط.....................................................................................................45
شکل 4-9 :شکل I_pa برحسب ν^(1/2) برای ولتامتری چرخه¬ای اکسیداسیون K4Fe(CN)6 در صفحه¬ی  (b)SAPO/CPE و (a)  CPE با سرعت اسکن¬های مختلف.......................................................................47
شکل 4-10: ولتامتری چرخه¬ای الکترود (a)CPE و الکترود SAPO/CPE 25% (b) بعد از قرارگرفتن در محلول 1/0  مولار نیکل کلراید و به همراه ولتامتری چرخه¬ای قبل از گذاشتن الکترودها در محلول 1/0 مولار نیکل کلراید.....................................................................................................................................48
شکل4-11: مقایسه¬ی شدت جریان پیک آندی الکترودهای اصلاح شده در حضور و در غیاب متانول.....49
شکل 4-12: a چرخه ولتامتری Ni/NSAPO/CPE  در سرعت اسکن¬های  کمتر از 300میلی¬ولت بر ثانیه در محلول  1/0  مولار  NaOH  . b شکل Ep  بر حسب Log υ  برای  پیک¬های آندی (a)  و کاتدی (b) ولتامتری چرخه¬ای نمایش داده شده در قسمت a . c  وابستگی جریان¬های پیک¬های آندی و کاتدی  به سرعت اسکن در سرعت اسکن¬های کمتر(5 تا 75 میلی¬ولت بر ثانیه).  d شکل  جریان¬های پیک¬های آندی و کاتدی بر حسب 2/1υ  برای سرعت اسکن¬های بالاتر از  75 میلی¬ولت بر ثانیه........................................50
شکل 4-13: ولتامتری چرخه¬ای  Ni/NSAPO/CPE  در محلول NaOH 1/0 مولار الف در حضور  متانول 01/0مولار و   ب غیاب متانول….…………………………..…………………………………....54
شکل 4-14: (a)   شکل Ipa بر حسب υ و (b)  Ipa برحسب 2/1υ  داده¬های استخراج شده ولتامتری چرخه¬¬ای الکترود Ni-SAPO/CPE در حضور متانول با غلظت 005/0 در محلول 1/0  مولار NaOH در سرعت اسکن¬های مختلف. (c)  تغییرات log(Ipa) بر حسب log υو (d)  شکل تغییرات 2/1υ /Ipa  برحسب …υ..56
شکل 4-15: تغییرات نرخ  Ipa/Ipc  برای Ni-SAPO/CPE نسبت به سرعت اسکن در محلول NaOH 1/0 مولار  ▲در غیاب متانول ■ در حضور متانول با غلظت 005/0 مولار....................................................58
شکل 4-16: منحنی تافل و منحنی الحاقی ولتامتری چرخه¬ای الکترود اصلاحی در محلول NaOH  1/0 مولار و در حضور متانول با غلظت 005/0 مولار با سرعت اسکن mV/s 20.............................................58
شکل4-17:  a  کرنوآمپرومتری دوپله¬ای الکترود Ni/NSAPO/CPE  در محلول NaOH 1/0  مولار باغلظتهای  0، 0015/0، 003/0، 01/0 مولار متانول (گام¬های پتانسیل به ترتیب 7/0 و 3/0 بر حسب Ag/AgCl/KCl )   b  منحنی جریان بر حسب زمان در I غیاب متانول و II حضور متانول c  وابستگی I_C/I_L  به t^(1/2) از روی داده¬های کرنوآمپرومتریc  وابستگی جریان به t^(-1/2) از داده¬های کرنوآمپرومتریd  وابستگی نرمال شده¬ی شکلc  به غلظت متانول.....................................................................................................59
شکل 4-18: نمایش رفتار نمایی کرنوآمپرومتری الکترود  Ni/NSAPO/CPE در مقابل الکترود  CPE....61
شکل 4-19: تصویرSEM  a) الکترود خمیر کربن b) الکترود خمیرکربن اصلاح شده با SAPO %25w/w  c) الکترود خمیرکربن اصلاح شده با SAPO بعد از لود شدن در محلول نیکل کلراید 1/0مولار................63

فهرست جداول

جدول 1-1: مثال¬هایی از زئولیت¬های کوچک، متوسط، بزرگ حفره    5
جدول 2-1: کشف¬ها و پیشرفت¬های اصلی در زمینه¬ی مواد غربال کننده¬ی مولکولی در طی این دوره        23
جدول 2-2: سیر تکامل زئولیت¬های آلومینوسیلیکاتی از دهه¬ی 1950 تا دهه¬ی 1970    24
جدول 4-1: جدول محاسبات ks  از طریق معادله (5) و شکل b4 برای mV 200<E∆    52
جدول 4-2: محاسبه مقدار kcat    60
جدول 4-3: مقایسه¬ی ثابت نرخ کاتالیزوری (kcat) برخی از الکترودهای اصلاحی در اکسیداسیون متانول.61

چکیده
در این پروژه سعی بر این بود گامی کوچک در راستای سنتز غربال مولکولی سیلیکوآلومینوفسفات در ابعاد نانو و بکارگیری آن در پیل¬های سوختی با سوخت متانول برداشته شود. لذا در این راه نانو سیلیکوآلومینوفسفات در شرایط هیدروترمال در شرایط بهینه تولید گردید. در ادامه از تکنیک¬های  XRD، FT-IR, SEM برای شناسایی غربال¬های مولکولی استفاده شد. نتایج طیف XRD نشان داد که سنتز غربال مولکولی سیلیکوآلومینوفسفات موفقیت آمیز بوده و میانگین اندازه ذرات تقریباً 35 نانومتر تخمین زده شد. نمونه¬ی سنتز شده در پیل¬های سوختی متانول مستقیم به کار برده شد. در غیاب متانول، مقدار ضریب انتقال الکترون (α) برابر با 5547/0، میانگین ثابت بار (ks)  برابر با 023/0 (1/s)، میانگین پوشش سطح الکترود   برابر با 7-10 × 89/9 و نیز در حضور متانول مقدار سرعت کاتالیزوری برابر با 104×  616/4 و ضریب نفوذ آشکار برابر با × 〖10〗^(-۶)848 /4  بدست آمد.

کلمات کلیدی: نانو سیلیکوآلومینوفسفات، سنتز هیدروترمال، غربال مولکولی، ولتامتری چرخه¬ا¬ی، پیل سوختی متانول مستقیم


دانلود با لینک مستقیم