کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

پایان نامه کارشناسی ارشد مهندسی عمران بررسی عددی پارامترهای تاثیر گذار در ترمیم اتصالات تیر -ستون سازه های بتنی مسلح

اختصاصی از کوشا فایل پایان نامه کارشناسی ارشد مهندسی عمران بررسی عددی پارامترهای تاثیر گذار در ترمیم اتصالات تیر -ستون سازه های بتنی مسلح دانلود با لینک مستقیم و پرسرعت .

پایان نامه کارشناسی ارشد مهندسی عمران بررسی عددی پارامترهای تاثیر گذار در ترمیم اتصالات تیر -ستون سازه های بتنی مسلح


 پایان نامه کارشناسی ارشد مهندسی عمران بررسی عددی پارامترهای تاثیر گذار در ترمیم اتصالات تیر -ستون سازه های بتنی مسلح

دانلود پایان نامه کارشناسی ارشد مهندسی عمران بررسی عددی پارامترهای تاثیر گذار در ترمیم اتصالات تیر -ستون سازه های بتنی مسلح با فرمت pdf تعداد صفحات 238

دانلود پایان نامه آماده

 

این پایان نامه جهت ارائه در مقطع کارشناسی ارشد رشته مهندسی عمران طراحی و تدوین گردیده است . و شامل کلیه مباحث مورد نیاز پایان نامه ارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این پایان نامه را با قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده از منابع اطلاعاتی و بالابردن سطح علمی شما در این سایت ارائه گردیده است.   


دانلود با لینک مستقیم

پایان نامه کارشناسی ارشد مهندسی عمران ارزیابی پارامترهای هندسی قوس های جاده ای در روند بهینه طراحی

اختصاصی از کوشا فایل پایان نامه کارشناسی ارشد مهندسی عمران ارزیابی پارامترهای هندسی قوس های جاده ای در روند بهینه طراحی دانلود با لینک مستقیم و پرسرعت .

پایان نامه کارشناسی ارشد مهندسی عمران ارزیابی پارامترهای هندسی قوس های جاده ای در روند بهینه طراحی


پایان نامه کارشناسی ارشد مهندسی عمران ارزیابی پارامترهای هندسی قوس های جاده ای در روند بهینه طراحی

دانلود پایان نامه کارشناسی ارشد مهندسی عمران ارزیابی پارامترهای هندسی قوس های جاده ای در روند بهینه طراحی با فرمت pdf تعداد صفحات 218

دانلود پایان نامه آماده

 

این پایان نامه جهت ارائه در مقطع کارشناسی ارشد رشته مهندسی عمران طراحی و تدوین گردیده است . و شامل کلیه مباحث مورد نیاز پایان نامه ارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این پایان نامه را با قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده از منابع اطلاعاتی و بالابردن سطح علمی شما در این سایت ارائه گردیده است.   


دانلود با لینک مستقیم

تعیین قدرت و استحکام لخته ورابطه ی آن با پارامترهای موثر

اختصاصی از کوشا فایل تعیین قدرت و استحکام لخته ورابطه ی آن با پارامترهای موثر دانلود با لینک مستقیم و پرسرعت .

تعیین قدرت و استحکام لخته ورابطه ی آن با پارامترهای موثر


تعیین قدرت و استحکام لخته ورابطه ی آن با پارامترهای موثر

تعیین قدرت و استحکام لخته ورابطه ی آن با پارامترهای موثر


دانلود با لینک مستقیم

دانلود پایان نامه بررسی پارامترهای طراحی ترانسفورماتورهای قدرت تکه فاز و ارائه الگوریتم مناسب

اختصاصی از کوشا فایل دانلود پایان نامه بررسی پارامترهای طراحی ترانسفورماتورهای قدرت تکه فاز و ارائه الگوریتم مناسب دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه بررسی پارامترهای طراحی ترانسفورماتورهای قدرت تکه فاز و ارائه الگوریتم مناسب


دانلود پایان نامه بررسی پارامترهای طراحی ترانسفورماتورهای قدرت تکه فاز و ارائه الگوریتم مناسب

بررسی پارامترهای طراحی ترانسفورماتورهای قدرت تکه فاز و ارائه الگوریتم مناسب برای طراحی بهینه آن با استفاده از نرم افزار MATLAB

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:144

پروژه مقطع کارشناسی برق – قدرت

فهرست مطالب :

مقدمه

فصل اول: مفاهیم اساسی در طراحی

فصل دوم: هسته ترانسفورماتور

فصل سوم: سیم پیچی ترانسفورماتور

فصل چهارم: طراحی ترانسفورماتور

منابع و مراجع

چکیده :

در میان مباحث مختلف علوم بحث طراحی یکی از مهمترین موضوعاتی است که در مورد آن باید تحقیقات وسیعی انجام شود. در مورد دستگاهها و وسایل الکتریکی نیز موضوع طراحی جایگاه ویژه ای دارد.

شاید پرکاربردترین وسیله ای که در اغلب دستگاههای الکتریکی و الکترونیکی بصورت مستقیم یا غیرمستقیم و در اندازه های کوچک و بزرگ استفاده می شود، ترانسفورماتور می باشد.

ترانسفورماتورها از نظر کاربرد انواع مختلفی دارند: ترانسفورماتورهای ولتاژ (VT) ، ترانسفورماتورهای جریان (CT) ، ترانسفورماتورهای قدرت (PT) ، ترانسفورماتورهای امپدانس، ترانسفورماتورهای ایزولاسیون و اتوترانسفورمرها . هر کدام از این نوع ترانسفورماتورها کاربرد و تعریف خاص خود را دارند.

در روند طراحی ترانسها مسایل مختلفی مطرح می شود، و مراحل متعددی باید طی شود تا یک طراحی بصورت پایدار و مناسب ، قاب ساخت و استفاده بصورت عملی باشد.

در این پروژه، بعد از بررسی مقدماتی و تعریف بعضی از پارامترهای مهم در مبحث ترانس، از جمله میل مدور (CM) ، ضریب شکل موج (Form Factor) و نیز ضریب انباشتگی سطح مقطع (Stacking factor) به معرفی دو فرمول اساسی مورد استفاده در روند طراحی پیشنهادی در این پروژه می پردازیم و در فصول بعدی به معرفی ضرایب مورد استفاده در طراحی هسته و سیم پیچی و نیز معرفی و ارایه کاتالوگها و نمودارهای موردنیاز برای طراحی انواع هسته و سیم پیجی، که از مباحث اساسی در ترانسفورماتورها می‌باشد، پرداخته میشود.

در ادامه مبحث اصلی و در واقع نتیجه ای که از مباحث قبلی گرفته شده است، در جهت ارائه یک نتیجه کلی، روندی برای طراحی ترانسفورماتورهای قدرت بصورت یک الگوریتم و روش برای طراحی آورده شده است.

در انتها نیز یک برنامه کامپیوتری در جهت بهبود روند طراحی و سرعت بخشیدن به انجام فرایند حجیم محاسباتی مبحث طراحی و بهبود بعضی از پارامترهای مهم از جمله راندمان، ارائه شده است. در پایان این بخش نیز نتایج چند طراحی آورده شده است.

فصل اول

مفاهیم اساسی در طراحی

در این قسمت به عنوان توضیح بعضی از تعاریف و مقدمات و چند مبحث بصورت گذرا مطرح می شود، که با توجه به اهمیت آشنایی با این مفاهیم در بحث طراحی می تواند بسیار مفید باشد.

تعاریف و مفاهیم:

مدل مدور (Circular Mil) :

میل مدور یکی از واحدهای متداول بین کننده سطح مقطع هادیها می‌باشد. وقتی که قطر هادی برابر با یک میل (mil) باشد، سطح مقطع هادی طبق روابط زیر و با توجه به شکل یک میل مدور خواهد بود.

(mil) قطر هادی D =

(CM) سطح مقطع هادی A=

1 mil = 0.001 inch

1 inch = 2.54 cm

(1-1)

ضریب شکل موج (From Factor) :

ضریب شکل موج برابر با نسبت مقدار rms موج ولتاژ مورد استفاده به مقدار میانگین این شکل موج است، که بدین ترتیب برای هر شکل موج مشخصه موجود، این ضریب متفاوت خواهد بود. برای مواردی که از موج متناوب سینوسی استفاده می شود، مقدار این ضریب برابر با 11/1 در نظر گرفته خواهد شد.

(2-1)  

در شکل موج سینوسی روابط 3-1 و 4-1 برقرار می باشند:

(3-1)  و (4-1)

و از روابط قبل برای موج سینوسی بدست می آید:

(5-1)

ضریب انباشتگی در سطح مقطع (Stacking Factor) :

ضریب انباشتگی در سطح مقطع برای بیان این واقعیت مطرح می‌شود که، سطح مقطع محاسبه شده هسته همیشه از مقدار واقعی سطح مقطع آهن هسته بیشتر است. بنابراین برای استفاده از پارامتر سطح مقطع در فرمولها باید این ضریب را که مقدار آن اغلب عددی نزدیک یک بوده و تقریباً 0.9 و یا 0.95 می باشد، به مقدار سطح مقطع ضرب کرد.

در اغلب موارد و نیز در این پروژه فاکتور انباشتگی با حرف کوچک s نمایش داده می شود.

معرفی دو فرمول اساسی در طراحی‌ها:

در طراحی ترانسها دو فرمول اساسی کاربرد زیادی دارند که در زیر آورده شده اند. با استفاده از این دو فرمول می توان به نتایج ارزشمندی رسید و روند طراحی را بصورت مدون و مشخص ارائه نمود. در این روابط مقدار ضریب انباشتگی سطح مقطع (s) را تقریباً برابر با یک در نظر گرفته ایم.

فرمول ولتاژ:

در این فرمول مقدار موثر تولید شده در یک سیم پیچی توسط رابطه (6-1) بیان می شود:

(6-1)

F : ضریب شکل موج

f : فرکانس (Hz)

a : سطح مقطع هسته

N : تعداد دور سیم پیچی

B : چگالی شار مغناطیسی

: ولتاژ تولید شده در سیم پیچی (ولت)

با استفاده از این رابطه می توان یکی از مهمترین پارامترهای طراحی یعنی تعداد دور به ازای هر ولت را براحتی محاسبه کرد و با توجه به شکل موج ولتاژ مورد استفاده یک رابطه مشخص بین این پارامتر و پارامترهای دیگر بدست آورد:

(7-1)

اگر در رابطه (7-1) مقدار a بجای برحسب بیان شود و نیز مقدار F هم برای موج سینوسی شکل در فرمول جاگذاری شود، رابطه (8-1) بدست خواهد آمد:

(8-1)

فرمول ظرفیت توان:

این فرمول مقدار توانی را که در یک هسته مشخص با چگالی جریان مشخص و در یک فرکانس معین می تواند تولید شود بیان می‌شود:

(9-1)

J : چگالی جریان سیم

f : فرکانس (Hz)

W : مساحت پنجره هسته

a : سطح مقطع هسته

B : چگالی شار مغناطیسی

P : ظرفیت توان تولیدی (ولت آمپر)

با استفاده از این رابطه نیز می توان یکی دیگر از فاکتورهای مهم در طراحی را بدست آورد. این فاکتور که در واقع حاصلضرب دو پارامتر W و a می باشد، با نام حاصلضرب Wa ، شناخته می شود و در حالتی که مقدار a و W را با واحد ، و مقدار J را بر حسب بیان شده و رابطه (9-1) را مرتب کنیم، رابطه (10-1) بدست خواهد آمد که از مهمترین و پرمصرف ترین روابط در طراحی می‌باشد:

(10-1)

در روابط (9-1) و (10-1) ، اگر میزان چگالی جریان را با پارامتر دیگری که دارای واحد اندازه گیری معکوس چگالی جریان قبلی است، بیان کنیم و پارامتر جدید را با S نمایش دهیم، بعد از اعمال سایر ضرایب معادل سازی، روابط (11-1) و (12-1) بدست خواهد آمد که در آن واحد سنجش چگالی جریان جدید (S) برابر با میل مدور بر آمپر بیان می گردد:

(11-1)

(12-1)

تلفات و افت ولتاژ در ترانسفورماتورها:

فلز هسته مانند سیمهای مسی توسط یک شار مغناطیسی متغیر لینک می شود. در نتیجه این شار یک جریان گردشی در هسته القا می‌شود. این جریان که eddy current نامیده می شود به همراه اثری دیگر بنام هیسترزیس یک تلفات توان به شکل گرما در آهن هسته ایجاد می کنند، که اغلب آن را تلفات آهن می گویند.

همچنین جریان بی باری در سیم پیچی اولیه با مقاومت سیم مسی روبرو می شود که باعث ایجاد تلفات و نیز افت ولتاژ می شود. این تلفات مستقل از بار بوده و به همراه تلفات آهن بخش عمده تلفات بی باری را تشکیل می دهند.

علاوه بر موارد بالا جریان بار که از مقاومت سیمهای اولیه و ثانویه عبور می کنند، تلفات را بوجود می آورد که سیمهای مسی را گرم می کند و ایجاد افت ولتاژ می کند. این تلفات را تلفات بار می گویند. تلفات توان هسته آهنی و جریان های بار سیم پیچ اولیه هم فاز می‌باشد و بنابراین بطور مستقیم جمع پذیرند. این تلفات قسمت غالب تلفات توان را جواب می دهند و اغلب تنها فاکتوری می باشند که در طراحی ها به حساب آورده می شوند.

منابع دیگر تلفات از جمله تلفات ناشی از جریان مغناطیس کنندگی نیز وجود دارند. این جریان به راکتانس سیم پیچی اولیه مربوط می‌باشد و مستقل از بار است. بخاطر اینکه این جریان نسبتاً راکتیو است، تلفات ناشی از آن نیز با تلفات توان هسته و جریان های بار هم فاز نمی باشد و نمی تواند بطور مستقیم با آنها جمع شود و زمانیکه این مقادیر باید به حساب آورده شوند (که البته تقریباً به ندرت و در تعداد کمی از ترانسهای قدرت) باید بصورت برداری وارد محاسبات گردند. خازن پراکنده و اندوکتانس نشتی دو فاکتور مهمی هستند که در تلفات و سایر پدیده های نامطلوب اثر می گذارند.

خاصیت خازنی پراکنده به طور حتم در بین دور سیمها، بین یک سیم پیچی با سیم پیچی دیگر و نیز بین سیم پیچی ها و هسته وجود دارد. این خازنها در عملکرد ترانس ایجاد اختلال می کنند، ولی با توجه به اینکه این خازنها به غیر از فرکانس های نسبتاً بالا تأثیر قابل توجهی روی مقادیر ترانس ندارند در شرایط معمولی و کار با فرکانس های پایین از آنها چشم پوشی می کنیم.

اندوکتانس نشتی بخاطر اینکه مقداری از خطوط شار سیم پیچی را در درون هسته لینک نمی کنند و مسیر فلو را در خارج هسته کامل می‌کنند، بوجود می آید. این نشت در هر دو سیم پیچ اولیه و ثانویه وجود دارد، ولی اگر هر دو سیم پیچ اولیه و ثانویه در روی یک ستون و بصورت روی هم پیچیده شوند مقدار آن بشدت کاهش خواهد یافت. اثر این اندوکتانس در فرکانسهای پایین بسیار کم خواهد بود.

در طراحی ترانسهای قدرت از اکثر فاکتورهای تلفات پراکنده بجز در موارد خاص که یک مقدار راکتانس کوچک را در نظر می گیریم، چشم‌پوشی می شود. به عنوان مثال فاصله های هوایی در هسته هایی که بصورت نامناسب ساخته شده اند، یا حرکت هسته به درون ناحیه اشباع اندوکتانس سیم پیچ اولیه و بنابراین راکتاس را کاهش می دهد. این امر باعث می شود که جریان مغناطیس کنندگی بالا رفته و به دنبال آن افت ولتاژها و تلفات مس در درون سیم پیچ اولیه زیاد شود.

در شکل (2-1) یک مدار معادل دقیق از ترانسفورماتور آورده شده است که در آن همه پارامترها منظور شده اند. شکل (3-1) برای حالت فرکانسهای پایین تنظیم شده است و فقط پارامترهای موثر در نظر گرفته شده اند.

با در نظر گرفتن شکل (3-1) بعنوان شکل مورد استفاده در این پروژه مطالعات زیر را انجام می دهیم.

از روابط جریان ها داریم:

(13-1)  

(15-1) و (14-1)

(17-1)  و (16-1)

برای ایجاد رابطه بین نسبت ولتاژها و تعداد دورها داریم:

(18-1)

(19-1)

از رابطه (19-1) می توان نتیجه بسیار مهم دیگری را بدست آورد. کاربرد این رابطه در بدست آوردن نسبت تعداد دورها در حالت جبران سازی افت ولتاژها برای حالتی که یکی از تعداد دورها و نیز افت ولتاژ سیم پیچی ها مشخص باشند، است.

اگر تعداد دور اولیه مشخص باشد، برای اینکه بدانیم با چه تعداد دوری در طرف ثانویه علاوه بر ایجاد نسبت ولتاژ مناسب، افت ولتاژها را جبران نماییم، از رابطه (20-1) استفاده می کنیم:

(20-1)

در حالتی که تعداد دور سیم پیچی در ثانویه مشخص باشد، تعداد دور اولیه با شرایط بالا بدست خواهد آمد:

(21-1)

تخمین تلفات ترانسفورماتور برای راندمان ماکزیمم:

یکی از آسانترین و مفیدترین اعداد و ارقامی که به عنوان فرض از آن استفاده فراوانی خواهد شد، راندمان می باشد. راندمان را با نشان می دهیم. از نظر قاعده ترانسفورماتورها ادوات کم تلفاتی هستند و اغلب راندمانی بین 75/0 و 95/0 دارند. بنابراین هر عددی در این فاصله می تواند مقدار مناسبی برای یک حدس اولیه باشد.

با استفاده از این عدد اولیه براحتی می توان مقدار توان مورد نیاز ورودی برحسب وات را محاسبه کرد:

(22-1)

بصورت منطقی از مقدار توان ورودی می توان جریان اولیه را برحسب آمپر محاسبه کرد:

(23-1)

برای ایجاد حالت بهینه در راندمان و نیز اقتصادی تر کردن طراحی باید دو موضوع مهم را در نظر بگیریم:

1- تلفات سیم پیچ اولیه و ثانویه با هم برابر باشند.

2- تلفات آهنی با تلفات مسی کل برابر باشند.

به بیان دیگر یعنی نصف کل تلفات در آهن هسته و نصف دیگر در مس باشند و تلفات مسی بصورت برابر بین سیم پیچی اولیه و ثانویه تقسیم شود.

در این حالت به تجربه فرمول دیگری را می توان بدست آورد که نسبت تعداد دور اولیه و ثانویه را از طریق راندمان به نسبت ولتاژها مربوط می‌سازد:

(24-1)  

برای ایجاد راندمان حداکثر از روش فوق باید فضای قابل دسترس برای سیم پیچی ها در هسته بصورت مساوی بین اولیه و ثانویه تقسیم شود، یعنی سیم پیچی اولیه نصف فضای کل در دسترس برای سیم پیچی ها در هسته را اشغال کند و مجموعه سیم پیچی های ثانویه نیز همگی با هم نصف دیگر فضای در دسترس را اشغال نمایند. منظور از فضای سیم پیچی حجم قسمتی است که توسط سیم در هر سیم پیچی اشغال شده است. شکل های (4-1) و (5-1) این مطلب را توضیح می دهند.

در مواردی ممکن است برای طراحی مقدار رگولاسیون ولتاژ داده شده باشد و از طریق آن باید مقدار راندمان را برای شروع روند طراحی حدس زد. در مورد ارتباط بین رگولاسیون ولتاژ و راندمان می توان رابطه زیر را با تقریب مناسبی بیان کرد:

(25-1)   و

از رابطه بالا رابطه (26-1) بدست خواهد آمد:

(26-1)  و


فصل دوم

هسته در ترانفسورماتورها

در این فصل در مورد انواع هسته و نیز مواد مورد استفاده در هسته ترانسفورماتورهای امروزی مطالبی آورده شده است که با توجه به اهمیت انتخاب هسته در روند طراحی می تواند یکی از قسمتهای مهم این پروژه و نیز پروژه‌های مشابه باشد.

تا کنون ماده هسته به طور مکرر با عنوان آهن بیان می شد. در واقع بیشتر مواقع آهنی وجود ندارد ولی آهن هم می تواند مورد استفاده قرار گیرد.

معمولاً ماده هسته آلیاژهایی در یک کلاس کاملاً کم آهن می باشد که شامل 85% نیکل به علاوه مقدار کمی آهن و سایر مواد می باشد. ماده دیگری نیز وجود دارد که اصلاً فلز نمی باشد و در واقع یک نوع سرامیک می باشد.

معمولترین نوع هسته فولاد ترکیب شده با آهن با مقدار کمی از سایر مواد می باشد که سایر مواد به صورت قابل ملاحظه سیلیکون می باشد.

مشخصه‌های مواد هسته:

به طور معمول پنج مشخصه هسته باید در نظر گرفته شود:

1- Permeability :

پرمابیلیته توانایی هدایت فلو است و از نظر ریاضی برابر است با نسبت چگالی فلو (B) به نیروی مغناطیس کنندگی ایجاد کننده آن.

(1-2)  

وقتی که B برحسب H رسم گردد منحنی بدست آمده مغناطیس شوندگی یا منحنی اشباع یا به صورت ساده منحنی B-H نامیده می شود (شکل 1-2).

این منحنی B-H برای یک ماده نمونه است که قبلاً کاملاً مغناطیس زدایی شده است و سپس به تدریج در معرض افزایش تدریجی نیروی مغناطیسی کنندگی قرار گرفته و در هر لحظه چگالی فلو اندازه گیری شده است. شیب منحنی در هر نقطه داده شده پرمابیلیته در آن نقطه می باشد. زمانی که محاسبه شود و برحسب B یا H رسم شود مشهود است که ثابت نیست. مقدار تغییر می کند و بنابراین مقدار آن در یک نقطه B یا H داده شده مشخص می شود (شکل 2-2).

در مقادیر کوچک H پرمابیلیته اولیه نامیده می شود. درجات معمولی مواد هسته از قبیل فولاد کم کربن و فولاد سیلیکون دار دارای اولیه کمی می‌باشد آلیاژهی زیادی از جمله انواع آهن نیکل دار در چندین دهه اخیر تلاش شده است برای اینکه اولیه آنها حتی به صورت نامحدود افزایش یابد.

یک اصطلاح دیگر که به صورت متناوب در طراحی ترانسفورماتور مواجه می شویم افزایشی است که بعضی وقتها ظاهری یا ac گفته می‌شود این زمانی است که یک نیروی مغناطیس کنندگی ac روی یک نیروی مغناطیس کنندگی dc گذاشته شود که یک وضعیت مشابه در بعضی انواع مدارهای الکترونیکی می باشد.

اثر این مقدار dc بردن آهن به نزدیک نقطه اشباع است و سپس برای ac این کاهش می یابد در چنین وضعیتی پرمابیلیته بهبود می یابد با در نظر گرفتن یک فاصله هوایی با اندازه بهینه در مدار مغناطیسی شکل 3-2 ، اثر تغییرات فاصله هوایی هسته را روی اندوکتانس سیم پیچی با هسته آهنی را نمایش می‌دهد. سه سطح dc جریان برای یک سطح ثابت نشان داده شده است.

و...

NikoFile


دانلود با لینک مستقیم

اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

اختصاصی از کوشا فایل اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم دانلود با لینک مستقیم و پرسرعت .

اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم


اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

مقدمه ای کامل و جامع و بسیار مناسب برای پایان نامه

حاصل از ترجمه مقالات معتبر خارجی - 43 صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی

payannameht@gmail.com

فایلهای مرتبط :

خواص و کاربردهای نانو ذرات اکسید تیتانیوم

روشهای سنتز نانو ذرات اکسید تیتانیوم و لایه های نازک اکسید تیتانیوم

 

مقدمه

در کاربردهای مختلف این مواد، روش­های سنتز نانوساختارها و پارامترهای موثر در هر روش نقش بسیار مهمی دارند. در این فصل به بررسی و مطالعه اثر پارامترهای مهم در سنتز نانوذرات و لایه­های نازک اکسید تیتانیوم به روش سل ژل و اسپری پایرولیزیز می­پردازیم.

 

 

3-1- بررسی پارامترهای موثر بر روی خواص نانوساختارهای اکسید تیتانیوم تهیه شده به روش سل- ژل

3-1-1- نقش عامل کمپلکس­ساز

بطور کلی با کنترل فرایند تبدیل سل به ژل می­توان اندازه و شکل ذرات را کنترل کرد .در روش سل ژل اگر تعداد بیشتری از یون­های فلزی در محلول اولیه توسط عامل کمپلکس­ساز به کی­لیت تبدیل شوند، در نهایت ژل همگن­تری خواهیم داشت. بنابراین نوع وغلظت عامل کمپلکس­ساز در سنتز نانوساختارهایی یکنواخت مهم خواهد بود. در مقالاتی که گزارش خواهیم کرد، نقش این پارامتر مهم را بر روی خواص ساختاری نانوساختارهای دی­اکسید تیتانیوم بررسی می­کنیم.

3-1-1-1- سنتز نانوذرات تیتانیا با حضور عامل کمپلکس­ساز مختلف به روش سل­ژل

یوکاوا[1]و همکارنش توانستند با پیش­ماده تیتانیوم تترا ایزوپروپکساید (TTIP) در دمای پایین، نانوذرات دی­اکسیدتیتانیوم را با فاز آناتاس و روتایل سنتز کنند [1]. آن­ها نشان دادند که حضور گروه­های هیدروکسیل (-OH) در عامل­های کمپلکس­ساز واکنش­های هیدرولیز را کنترل کرده و با افزایش تعداد اتم­های کربن و گروه­های  OHبرهمکنش بین عامل کمپلکس­ساز و یون­های Ti+4 افزایش می­یابد. در این تحقیق، از چهار پلی­ال متفاوت بعنوان عامل کمپلکس­ساز استفاده کرده و اثر تغییر غلظت آن­ها را روی گذار فاز، مورفولوژی و اندازه ذرات بررسی کرده­اند.

 در اینجا نتایج بدست آمده از عامل­های کمپلکس­ساز اتیلن­گلیکول[2][HOCH2CH2OH] و دی­مانیتول[3] [HOCH2CH(OH)CH(OH)CH(OH)CH(OH)CH2OH] را گزارش خواهیم کرد.

- روش تهیه نانوذرات TiO2

30 درصد وزنی محلول H2O2 به 10 میلی لیتر از محلول 1 مولار اتانول حاویTTIP  که نسبت مولی آن با آب اکسیژنه برابر 12:1 است اضافه شده است. سپس محلول بدست آمده، هر بار با 100 میلی لیتر اتیلن گلیکول و دی­مانیتول رقیق شده است. غلظت پلی­ال­ها از mol/l0 تا 5 تغییر داده شده­اند. محلول در دمای 95 به­مدت 24 ساعت حرارت­دهی شد. سپس برای حذف ترکیبات آلی، فرآیند پراکنده­سازی ژل در 500 میلی لیتر آب مقطر در دمای 75 برای 1 ساعت انجام شده است. عملیات شستشو ژل تا 3 بار تکرار شد، سپس ژل را از آب جدا کرده و در دمای95 برای 12 ساعت در اتمسفر قرار داده­اند تا خشک گردد.

طیف­های پراش پرتو X (شکل 3-1-الف) در غیاب اتیلن­گلیکول، حضور ترکیبی از فاز آناتاس و روتایل را در نمونه­های تهیه شده نشان می­دهند. با افزایش غلظت اتیلن گلیکول از شدت پیک­های متعلق به فاز روتایل کاسته...

.

.

 

 

 

فهرست مطالب

عنوان                                                                                           صفحه

 

 

فصل سوم: مطالعه پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم   1

3-1- بررسی پارامترهای موثر بر روی خواص نانوساختارهای اکسید تیتانیوم تهیه شده به روش سل- ژل.. 1

3-1-1- نقش عامل کمپلکس ساز 1

3-1-1-1- سنتز نانوذرات تیتانیا با حضور عامل کمپلکس ساز مختلف به روش سل ژل.. 2

3-1-1-2- مقایسه عملکرد عامل های کمپلکس ساز در تهیه لایه های نازک TiO2 به روش سل ژل.. 5

3-1-2- نقش حلال.. 13

3-1-3- اثر دمای بازپخت... 19

3-1-4- تغییر نسبت آب به آلکوکسید. 23

3-1-5- نوع کاتالیزور 26

3-1-6- اثر pH.. 27

3-2- بررسی پارامترهای موثر بر روی خواص لایه های نازک اکسید تیتانیوم تهیه شده به روش اسپری پایرولیزیز  30

3-2-1- اثر روش لایه نشانی (اسپری پایرولیزیز و مگنترون اسپاترینگ) بر روی خواص ساختاری، اپتیکی و فوتوکاتالیستی TiO2 30

3-2-2- بررسی خواص لایه های نازک تهیه شده به روش اسپری پایرولیزیز با تغییردمای بستر و تغییر زیرلایه  34

 مراجع. 38

 

 

 

 

 

فهرست جدول­ها

 

عنوان و شماره                                                                              صفحه

 

جدول3-1: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز (با استفاده از داده های رامان) 10

جدول3-2: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز و اندازه ذرات محاسبه شده با فرمول دبی-شرر.(با استفاده از داده های XRD) 11

جدول3-3: ترکیب و شکل ظاهری رسوب تیتانیا با حلال های مختلف... 15

جدول3-4: میانگین اندازه بلورک ها با رابطه شرر 17

جدول3-5: نتایج اندازه گیری های XRD و تعیین اندازه بلورک ها با رابطه شرر 22

جدول3-6: مساحت سطح موثر نانوذرات تیتانیا در دماهای بازپخت مختلف... 23

جدول3-7: مساحت سطح موثر پودر تیتانیا در درجه هیدرولیز متفاوت با کاتالیزور مختلف 25

جدول3-8: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپاترینگ... 32

جدول3-9: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپری پایرولیزیز 32

جدول3-10: شرایط لایه نشانی و خواص فیزیکی لایه های آناتاس بر روی بستر کوارتز و (100) Si 35

 

فهرست شکل­ها

 

عنوان                                                                                           صفحه

 

 

شکل3-1: طیف XRD پودر تیتانیا تهیه شده در دمای K 368 به مدت h 24 با عامل کمپلکس ساز الف: اتیلن گلیکول در غلظت (a) mol/l0، (b) mol/l 1، (c) mol/l2 (d) mol/l5. 4

شکل3-2: حضور نسبی فاز آناتاس بر حسب غلظت های عامل کمپلکس ساز. ○: دی مانیتول، ∆: اتیلن گلیکول  4

شکل3-3: مساحت سطح موثر (SBET) نانوپودر TiO2 برحسب غلظت پلی ال. ○: دی مانیتول، : اتیلن گلیکول.. 5

شکل3-4: تصاویر FE-SEM با عامل کمپلکس ساز دی مانیتول در غلظت های.. 5

شکل3-5: رابطه بین غلظت دی مانیتول و مقدار کربن.. 6

شکل3-6: طیف IR فیلم TiO2 در دماهای مختلف با عامل (الف) DEA، (ب)  AcAc. 8

شکل3-7: طیف IR فیلم TiO2 در دماهای مختلف با عامل DEA+AcAc. 9

شکل3-8: طیف رامان لایه های TiO2 در دماهای مختلف با عامل (a)AcAc ، (b)PEG + AcAc. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل   10

شکل3-9: طیف های XRD فیلم های TiO2 با عامل های کمپلکس ساز مختلف در دمای (a) C˚500 و (b) C˚800  11

شکل3-10: طیف IR محلول اولیه شامل عامل کمپلکس ساز (1) DEA، (2) TEA، (3) AcAc، (4) H3L و (5) HAC 12

شکل3-11: تصاویر  SEMو مورفولوژی سطوح لایههای نازک با عامل کمپلکس ساز (a) DEA، (b) TEA، (c) AcAc، (d) HAC و (e) H3L. با حلال (a-e) EtOH و (f) n- butanol 12

شکل3-12: استیل استن در دو شکل شیمیایی.. 15

شکل3-13: شکل گیری کی لیت بین استیل استن و تیتانیوم ایزوپروپکساید. 15

شکل3-14: طیف FTIR رسوب تیتانیا (a) در حضور عامل کمپلکس ساز 16

شکل3-15: طیف XRD رسوب تیتانیا بدون عملیات حرارتی (a) با حلال استن (b) با حلال هگزان (c) باحلال استن بدون عامل کمپلکس ساز. با انجام عملیات حرارتی در دمای C˚450 برای 1 ساعت (d) با حلال استن 17

شکل3-16: تصاویر SEM رسوب تیتانیا با حلال (a) استن، (b) بوتانول.. 18

شکل3-17: تصاویر SEM رسوب تیتانیا ، با حلال (a) تولوئن و (b) هگزان، با بزرگنمایی زیاد 18

شکل3-18: عکس های TEM (a) سل کلوئیدی با ذرات TiO2، (b) ژل بدون آب (c) ژل خشک بازپخت شده در دمای C˚400 برای 2 ساعت 20

شکل3-19: الگوی پراش پرتو x اکسید تیتانیوم (a) قبل و بعد از بازپخت در دمای (b) C˚400، (c) C˚500، (d) C˚600 و (e) C˚700 21

شکل3-20 (a-d): طیف های  XRDنانوپودر تیتانیا بازپخت شده در دماهای مختلف با کاتالیزور HCL و نسبت آب 1x= (a)، 2x= (b)، 3x= (c)، 4x= (d). نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 23

شکل3-21: تغییر اندازه بلورک ها با افزایش دمای بازپخت در (a) 2x= و (b) 4x= 23

شکل3-22: تغییر اندازه بلورک ها با افزایش دمای بازپخت دردرجه هیدرولیز مختلف 24

شکل3-23: تصاویر  TEMنانوذرات تیتانیا (a) سنتز شده در 1x= (b) سنتز شده در 4x= (c) بازپخت شده در دمای C˚400 برای 2 ساعت در 4x= 25

شکل3-24: طیف  XRDپودر تیتانیا در دماهای بازپخت مختلف و با کاتالیزور استیل استن. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 26

شکل3-25: طیف XRD پودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 27

شکل3-26: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 27

شکل3-27: طیف XRD پودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 28

شکل3-28: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 28

شکل3-29: طیف XRD فیلم TiO2 تهیه شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 30

شکل3-30: طیف عبور اپتیکی فیلم  TiO2سنتز شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 31

شکل3-31: تغییرات جذب متیلن آبی (ABS ) روی سطح فیلم TiO2 بر حسب پارامترهای لایه­نشانی در دو روش اسپاترینگ و اسپری پایرولیزیز 32

شکل3-32: درصد عبور لایه های TiO2 آغشته به متیلن آبی بصورت تابعی از زمان نوردهی در دو روش اسپاترینگ و اسپری پایرولیزیز  32

شکل3-33: طیف XRD فیلم TiO2 در دمای بستر (a) C˚250، (b) 400، (c) 500 . 34

شکل3-34: تصاویر AFM (a,b) C˚250Ts=، (c,d) C˚400Ts=، (e,f) C˚500Ts= 35

شکل3-35: تصویر  SEMلایه های TiO2 تهیه شده در دمای بستر (a) C˚250، (b) 400، (c) 500 ........ 36

شکل3-36: ضریب جذب و گاف غیرمستقیم لایه های نشانده شده روی بستر کوارتز 36


دانلود با لینک مستقیم