کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

تحقیق در مورد خوردگی در دیگ بخار

اختصاصی از کوشا فایل تحقیق در مورد خوردگی در دیگ بخار دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

عوامل خوردگی کوره دیگ بخار:

یکی از مشکلات اساسی که می تواند باعث بروز مشکل برای کوره ها باشد، خوردگی در نقاط و وسایل مختلف آن است که ضمن هدر رفتن

مقدار زیادی انرژی، آسیب های مکانیکی متعددی به کوره وارد می

کند. از آنجا که هر کوره از بخش های متعددی همچون بدنه، اطاقک

احتراق (Fire Chamber)، دودکش، مشعل و سایر تجهیزات جانبی تشکیل

شده، لذا علل خوردگی و راه حل های پیشنهادی در هر یک از بخش ها

به طور مجزا مورد بحث و بررسی قرار می گیرد.

بدنه کوره :

معمولاً بدنه یا دیواره خارجی کوره ها را از ورقه استیل16/3 و کف

آن را از ورقه 4/1 می سازند.

در طراحی ها عموماً اتلاف حرارتی از بدنه کوره حدود 2 درصد منظور

می شود. نوع و ضخامت عایق کاری بدنه داخلی کوره باید طوری در نظر

گرفته شود که دمای سطح خارجی کوره بیش از (1800° F) نشود. اصولاً

عایق کاری و عایق های به کار رفته در کوره ها از نظر سرویس دهی

مناسب، عمر معینی دارند و به مرور زمان ساختمان کریستالی آنها

تغییر یافته و ضخامت آنها کم می شود و این تغییرات ساختمانی سبب

تغییر ضریب انتقال حرارت و اتلاف انرژی به بیرون خواهد بود.

مطالعات میکروسکپیک و کریستالوگرافیک چند نمونه عایق کار کرده،

با نوع تازه آن موید این مطلب است. در صورتی که عایق دیواره های

کوره بر اثر بنایی ناصحیح، عدم انجام صحیح Curing بر مبنای

دستورالعمل، حرارت زیاد و یا شوک های حرارتی ترک بردارد، نشت

گازهای حاصل از احتراق که عبارتند از: So x، No x، N2،Co2

(درصورتی که نفت کوره به عنوان سوخت مصرف شود) و بخار آب در

لابلای این ترک ها و تجمع آنها در لایه بین بدنه کوره و عایق

دیواره و سرد شدن تدریجی آنها تا دمای نقطه شبنم، باعث خوردگی

بدنه می شود.

تداوم این امر ضمن اتلاف مقدار بسیار زیاد انرژی (از طریق بدنه

کوره به محیط اطراف)، باعث ریختن عایق و در نتیجه اتلاف بیشتر

انرژی و گسترش خوردگی بر روی بدنه کوره و سایر نقاط آن خواهد شد.

در یک بررسی ساده بر روی کوره ای که چندین سال از عمر عایق آن می

گذشت ملاحظه شد که دمای اندازه گیری شده واقعی سطح کوره در اکثر

نقاط بسیار بیشتر از میزان طراحی است. این مقدار در بعضی از

موارد به (1800° F) نیز می رسید.

در این کوره ضمن جدا شدن عایق از دیواره کوره و گسترش خوردگی در

نقاط مختلف بدنه، گرم شدن بدنه کوره نیز موجب خم شدن دیواره ها

شده و سرعت خوردگی را افزایش داده و باعث خرابی قسمت های مختلف

کوره شده است. به طور کلی برای جلوگیری و یا کاهش مشکلات خورندگی

بر روی بدنه کوره لازم است به هنگام تعمیرات اساسی ضمن توجه به

عمر عایق دیواره در صورتی که عمر آنها از حد معمول گذشته باشد

(البته با توجه به درجه حرارتی که درهنگام کار کردن واحد درمعرض

آن بوده اند) آنها را با عایق مناسب و استاندارد تعویض کرد و در

صورت وجود ترک (قبل و یا بعد از بنایی)، محل ترک ها را با الیاف

مخصوص KAOWOOL پر کرد. همچنین در بنایی، عملیات Curing را مطابق

دستور العمل انجام داد تا پیوند هیدرولیکی در عایق های بکار رفته

در بنایی، به پیوند سرامیکی تبدیل شده و میزان رطوبت باقیمانده

در دیواره از 0.4 gr/m2 بیشتر نشود.

البته چنانچه Ceramic Fiber (الیاف سرامیکی) به عنوان عایق

دیواره کوره مورد استفاده قرار گیرد، بدلیل عدم نیاز به Curing و

Drying و سبکی وزن، مشکلات احتمالی استفاده از عایق های نیازمند

به Curing را نخواهیم داشت. ضمن این که عمر بیشتر و چسبندگی

بهتری به دیواره، نسبت به دیگر عایق های موجود دارند.

تیوب ها یا لوله های داخل کوره:

معمولاً کوره ها متشکل از دو بخش RADIATION و CONVECTION هستند

که بایستی ظرفیت گرمایی (DUTY) کوره از نظر درصد، تقریباً به

نسبت70 و30 درصد بین این دو بخش تقسیم شود.

از آنجا که لازم است سیال به اندازه دمای مورد نظرگرم شود بایستی

حرارت مورد نیاز خود را از طریق هدایتی از لوله ها و تیوب های

داخل کوره دریافت کند، این لوله ها نیز حرارت مورد نیاز برای این

انتقال حرارت را از طریق تشعشعی و جابجایی در اثر احتراق سوخت در

داخل کوره جذب می کنند. انتخاب آلیاژ مناسب جهت لوله با توجه به

نوع سیال و ترکیبات آن و میزان حرارت دریافتی توسط لوله و در

معرض شعله قرار گرفتن از اهمیت بسزایی برخوردار است.

مسائلی که به بروز مشکلاتی برای تیوب ها منجر می شود عبارتند از:

سرد و گرم شدن ناگهانی لوله، گرم شدن بیش از حد لوله و بالا رفتن

دمای تیوب از حداکثر مجاز آن، در معرض شعله قرار گرفتن و برخورد

شعله به لوله (impingement) ، ایجاد یک لایه کُک بر روی جداره

داخلی لوله، Carborization، Hogging، Bending، Bowing، Sagging،

Creeping، خوردگی جداره داخلی لوله بر اثر وجود مواد خورنده در

سیال عبوری، خوردگی جداره بیرونی لوله در اثر رسوبات حاصل از

احتراق سوخت مایع بر روی جداره خارجی لوله، کارکرد لوله بیش از

عمر نامی آن (80 هزار الی 110 هزار ساعت)

سرد و گرم شدن ناگهانی لوله، ممکن است به Creeping (خزش) که

نتیجه آن ازدیاد قطر لوله می باشد منجر شود که در این صورت

احتمال پارگی لوله و شکنندگی آن را افزایش می دهد. چنانچه در اثر

Creeping مقدار ازدیاد قطر از 2 درصد قطرخارجی لوله بیشتر شود،

لوله مزبور بایستی تعویض شود.

در یک اندازه گیری عملی که برای برخی از تیوب های هشت اینچی و شش

اینچی کوره (کوره تقطیر در خلا) H-151 در هنگام تعمیرات اساسی

صورت پذیرفت، محاسبات زیر بدست آمد:

برای تیوب "8

OD = 8.625 (اصلی)

OD = 8.75 (اندازه گیری شده)

(OD = (0.125 (افزایش قطر لوله)

(OD ALLOWABLE = (8.625x2%=0.1725

هنوز می توان از تیوب مزبور استفاده کرد.

برای تیوب "6

OD = 8.625 (اصلی)

OD = 8.675 (اندازه گیری شده)

(OD = (0.05 (افزایش قطر لوله)

(OD ALLOWABLE = (6.625x2%=0.1325

که هنوز می توان از تیوب شش اینچی مزبور استفاده کرد.

همان طور که مشخص است تیوب 8 حدوداً بیش از دو برابر تیوب 6

ازدیاد قطر داشته است.

برای لوله "6

کوره H-101 (اتمسفریک)

OD =6.625 (اصلی)

OD = 6.635 (اندازه گیری شده)

OD =0.01 (اندازه قطر لوله)

(OD ALLOWABLE = (6.625x2%=0.1325

بالا نگه داشتن دمای پوسته تیوب ها سبب کاهش مقاومت لوله ها و

کاهش عمر مفید و گارانتی حدود یکصد هزار ساعتی آنها می شود.

تجربه نشان داده است که اگر به مدت 6 هفته سطح خارجی (پوسته)

لوله ای 900°C بیش از مقدار طراحی در معرض حرارت قرار بگیرد، عمر

تیوب ها نصف می شود.

یکی دیگر از مشکلات پیش آمده برای لوله ها، برخورد شعله به لوله

(IMPINGEMENT) است، که باعث OVER HEATING کوره و در نهایت HOT

SPOT می شود. این امر می تواند ضمن لطمه زدن در محل برخورد شعله

به لوله، باعث تشدید عمل کراکینگ مواد داخل لوله شود و مواد

مزبور به دو قسمت سبک و سنگین تبدیل گردند.

مواد سنگین به جداره داخلی لوله چسبیده و کک ایجاد می کنند. به

ازای تشکیل یک میلی لیتر ضخامت کک با توجه به ضریب هدایتی کک که

برابر مقدار خاصی می باشد برای یک شارژ حرارتی معمول در قسمت

تشعشعی کوره H-101 (اتمسفریک) می باشد، معادل فرمول زیر است:

می بایستی 300°C دمای پوسته تیوب بالاتر رود تا سیال موجود در

تیوب به همان دمای موردنظر برسد. در این صورت ملاحظه می شود بالا

رفتن دمای تیوب به چه میزان اتلاف سوخت و انرژی، داشته و به طور

کلی به مرور زمان چه لطمه ها و آسیب هایی به کل کوره وارد می

شود. به عبارت دیگراختلاف دمای پوسته تیوب های کوره که در طراحی

عموماً 1000°F بالاتر از دمای متوسط سیال درون آن در نظر گرفته

می شود، به مرور زمان با تشکیل کک (با رسوبات بیرونی) بیشتر می

شود.

مشکل دیگر که به علت دمای بالا برای تیوب های کوره ها ایجاد می

شود خمیدگی در جهت های مختلف این تیوب هاست.

یکی دیگر از مسائلی که باعث خم شدن و شکستگی لوله ها می شود

پدیده کربوریزیشن (carborization) است که بر اثر ترکیب کربن با

آهن پدید می آید: این واکنش که باعث تولید کربور آهن خواهد شد در

دمای بالاتر از 7000°c ایجاد می شود 7000°C)تا 14000°C). این

حالت عمدتاً در زمان Curing و drying کوره پدید می آید. البته

Hot spot نیز بیشتر در این زمان ها اتفاق می افتد.

وجود ناخالصی های مختلف مثل فلزات سدیم، وانادیم، نیکل و غیر...،

فلزاتی مثل گوگرد و ازت به صورت ترکیبات آلی در سوخت های مایع،

مسائل عدیده ای را باعث می شوند، که از آن جمله کاهش انتقال

حرارت از طریق سطح خارجی تیوب به سیال درون تیوب است که به علت

تشکیل رسوبات مربوط به ناخالصی های مزبور بخصوص رسوبات فلزی بر

روی تیوب هاست. به همین دلیل برای رسیدن به دمای مورد نظر سیال

موجود در لوله، مجبور به مصرف سوخت بیشتر خواهیم شد. در نتیجه

مشکلات ایجاد گرمای بیشتر در کوره و مسائل زیست محیطی در اثر

تشکیل SOX، NOX و ... را خواهیم داشت. از طرفی به دلیل نشست این

رسوب ها بر روی تیوب ها مسئله خوردگی و سوراخ شدن پیش خواهد آمد.

علت این خوردگی که از نوعHigh temp corrosion می باشد پدیده

سولفیدیش است، که در دماهای بین630°C تا700°C بوقوع می پیوندد.

همان طور که گفته شد علت اصلی آن وجود عناصر وانادیم، گوگرد،

سدیم و نیکل به همراه گازهای حاصل از احتراق سوخت است.

فلزات ذکر شده (بصورت اکسید) به کمک این گازها بالا رفته و بر

روی تیوب های قسمت تشعشع و جابه جایی می نشینند. خوردگی و سوراخ

شدن تیوب، بر اصل اکسید شدن و ترکیب عناصر مزبور باآلیاژ تیوب

استوار بوده که باعث ایجاد ترکیبات کمپلکس با نقطه ذوب پایین می

شود.

ترکیب اولیه پس از Na2SO4، سدیم وانادایت به فرمول Na2O6V2O5 است

که نقطه ذوب آن 6300°C می باشد. عمده ترکیبات دیگر که شامل

کمپلکسی از ترکیب پنتا اکسید وانادیم و سدیم است در شرایطی به

مراتب ملایم تر و درجه حرارتی پایین تر ذوب می شوند. برای مثال

مخلوط وانادیل وانادیت سدیم به فرمول Na2OV2O411V2O5 و

متاوانادات سدیم به فرمول Na2OV2O5 در 5270°C ذوب می شوند. ذوب

این کمپلکس ها شرایط مساعدی را برای تسریع خوردگی بوجود می آورد.

در اینجا ترکیبات حاصل از احتراق نه تنها به نوع ناخالصی بلکه به

نسبت آنها نیز بستگی کامل دارد و در مورد وانادیم میزان سدیم از

اهمیت خاصی برخوردار است.

البته سدیم وانادیل وانادایت پس از تولید و ذوب شدن، با فلز

آلیاژ مربوط به تیوب، ترکیب شده و بر اثر سیال بودن از سطح آلیاژ

کنار رفته و سطوح زیرین تیوب مربوطه در معرض ترکیب جدید قرار می

گیرد. ادامه این وضع به کاهش ضخامت تیوب و در نهایت سوراخ شدن و

از کار افتادن آن منجر می شود.

مشعل ها و سوخت:

نقش کیفیت نوع سوخت و نوع مشعل ها شاید از همه عوامل یاد شده در

کارکرد مناسب، راندمان بیشتر و کاهش خوردگی بیشتر برخوردار باشد.

چنانچه از مشعل های Low excess air و یا نوع مرحله سوز (stage

burning) استفاده شود، هوای اضافی مورد نیاز به میزان قابل توجهی

کاهش یافته و به حدود 3 و 5 درصد می رسد که ضمن کاهش و به حداقل

رساندن گازهای خورنده و مضر زیست محیطی مثل NOx، Sox، در بالا

بردن راندمان کوره بسیار موثر خواهد بود. این امر باعث کاهش مصرف

سوخت شده، و در نتیجه باعث کاهش گازهای حاصل از احتراق و آسیب

رساندن به تیوب ها، بدنه کوره و دود کش ها خواهد شد. وضعیت

عملکرد مشعل ها بایستی به طور مداوم زیر نظر باشد. بد سوزی مشعل

ها می تواند دلایل متضادی، همچون نامناسب بودن سوخت، عیب

مکانیکی، کک گرفتگی سرمشعل و یا بالعکس، رفتگی و سائیدگی

(Errosion) بیش از حد سر مشعل، کمبود بخار پودر کننده و ...

داشته باشد. وجود مواد آسفالتی، افزایش مقدار کربن باقیمانده

(carbon residue) ، بالا بودنِ مقادیر فلزات مثل سدیم، نیکل،

وانادیم و هم چنین سولفور در سوخت مسائل متعددی را در سیستم

احتراق ایجاد می کند که این مسائل به طور کلی به دو دسته تقسیم

می شوند.

الف - مسائل عملیاتی قبل از مشعل ها و احتراق:

این مسایل در اثر وجود آب و نمک ها و ته نشین شدن آنها در ذخیره

سازی نفت کوره بوجود می آیند. در این رابطه عدم تخلیه مداوم مخزن

ذخیره سازی، خوردگی و مشکلات ایجاد شده به طور خلاصه عبارتست از:

تشکیل لجن (sludge) در مخزن در اثر عدم استخراج کامل نفت کوره و

آب، انباشته شدن لجن در فیلترها در اثر محصولات ناشی از خوردگی و

پلیمریزاسیون هیدروکربورهای سنگین به علت اثر کاتالیزوری محصولات

ناشی از خوردگی، انباشته شدن لجن و صمغ های آلی در گرم کننده

سوخت، گرفتگی و خوردگی در نازل های پودر کننده نفت کوره


دانلود با لینک مستقیم


تحقیق در مورد خوردگی در دیگ بخار

دانلود تحقیق کوره های قوس الکتریکی و القائی

اختصاصی از کوشا فایل دانلود تحقیق کوره های قوس الکتریکی و القائی دانلود با لینک مستقیم و پرسرعت .

دانلود تحقیق کوره های قوس الکتریکی و القائی


دانلود تحقیق کوره های قوس الکتریکی و القائی

 

 

 

 

 

 

 



فرمت فایل : word(قابل ویرایش)

تعداد صفحات:39

فهرست مطالب:

مقدمه ۱
تاریخچه آهن (Fe) 2
پیدایش : ۶
خصوصیات قابل توجه : ۷
کاربردها ۸
ترکیبات ۹
بیولوژی ۱۰
ایزوتپها ۱۰
سنگ معدن های آهن ۱۲
فرآیندهای اولیه استخراج آهن ۱۳
مواد اولیه مورد نیاز استخراج آهن ۱۴
سنگ معدن آهن: ۱۴
زغال کک ۱۴
سنگ آهک: ۱۵
واکنش های کوره استخراج آهن ۱۵
احیای مستقیم ۱۷
کوره بلند: ۱۷
کارگاه چدن ریزی ۱۹
مراحل تولید آهن درکوره بلند ۲۰
نقش سرباره ۲۱
نقش مقدار زیاد کک درکوره ۲۱
گاز خروجی از بالای کوره ۲۱
جایگزین هوا در بعضی از کوره ها ۲۲
ناخالصی های آهن و تولید فولاد ۲۲
کوره تولید فولاد و جداکردن ناخالصی ها ۲۴
روش بسمه: ۲۵
روش کوره باز (با روش مارتن): ۲۶
روش الکتریکی: ۲۶
انواع فولاد و کاربرد آنها ۲۷
تبدیل آهن به فولاد آلیاژی ۲۸
بزرگترین عملیات نصب تجهیزات کوره بلند ذوب آهن اصفهان : ۳۰
کوره بلند ۳۱
شارژ کردن ۳۲
منابع بالقوه جانبی : ۳۲
کنترل های احتمالی درمورد مهندسی و کارهای عملی: ۳۳
پرسازی: ۳۴
منابع بالقوه درمعرض : ۳۴
کنترل های ممکن برای مهندسی و کارهای علمی : ۳۵
سوارخ کردن Tuyere (پانچ کردن): ۳۶
منابع بالقوه درمعرض : ۳۶
فهرست منابع : ۳۸

 

 

مقدمه:

امروزه یکی از اساسی ترین پایه های اقتصادی و اجتماعی کشورهای جهان را صنایع آهن و فولاد تشکیل می دهد و این به سبب نیاز مبرمی است که انسان جهت پیشبرد، مفاصد خود در زندگی دارد. با نگاه اجمالی به کارایی این عنصر حیاتی، می توان به نقش سازنده آن پی برد. زیرا علاوه برکارکرد آن درامر ساختمان سازی، پل سازی و غیره یکی از کالاهای اساسی در صنایع اتومبیل سازی، کشتی سازی و لکوموتیو سازی است و به صورت آلیاژ های مختلف، اساس تکنولوژی ماشین آلات را تشکیل می دهد. که آهن و فولاد به روش های مختلفی تهیه و تولید می شدند ما  دراین تحقیق روش تهیه بوسیله کوره بلند را از ابتدا مورد بررسی قرار می دهیم.

آهن عنصر شیمیایی است که در جدول تناوبی با نشان Fe و عدد اتمی ۲۶ وجود دارد. آهن فلزی است که در گروه ۸ و دوره ۴ جدول تناوبی قرار دارد.


تاریخچه آهن (Fe)

اولین نشانه های استفاده از آهن به زمان سومریان و مصریان برمی گردد که تقریباً ۴۰۰۰ سال قبل از میلاد با آهن کشف شده از شهاب سنگها اقلام کوچکی مثل سر نیزه وزیور آلات می ساختند. از ۲۰۰۰ تا ۳۰۰۰ سال قبل از میلاد، تعداد فزاینده ای از اشیاء ساخته شده با آهن مذاب (فقدان نیکل، این محصولات را از آهن شهاب سنگی متمایز می کند) دربین النهرین، آسیای صغیر و مصر به چشم می خورد؛ اما ظاهراً تنها در تشریفات از آهن استفاده می شد و آهن فلزی گرانبها حتی با ارزش تر از طلا به حساب می آمد.

براساس تعداد از منابع آهن، به عنوان یک محصول جانبی از تصفیه مس تولید می‌شود مثل آهن اسفنجی – و به وسیله متالوژی آن زمان قابل تولید مجدد نبوده است. از ۱۶۰۰ تا ۱۲۰۰ قبل از میلاد درخاورمیانه بطور روز افزون ا زاین فلز استفاده می شد، اما جایگزین کاربرد برنز درآن زمان نشد.  تیرآهنی متعلق به عنصر آهن سوند در گاتلند سوئد یافت شده است. از قرن ۱۰ تا ۱۲ در خاورمیانه یک جابجایی سریع درتبدیل ابزار و سلاحهای برنزی به آهنی صورت گرفت. عامل مهم دراین جابجائی آغاز ناگهانی تکنولوژی های پیشرفته کار با آهن نبود، بلکه عامل اصلی، مختل شدن تامین قلع بود. این دوره جابجایی که در زمانهای مختلف و درنقاط مختلفی از جهان رخ داد، دوره ای از تمدن به نام عصرآهن را به وجود آورد. همزمان با جایگزینی آهن به جای برنز، فرآیند کربوریزاسیون کشف شدکه به وسیله آن به آهن موجود درآن زمان کربن اضافه می کردند. آهن را بصورت اسفنجی که مخلوطی از آهن و سرباره به همراه مقدار ی کربن یا کاربید است، بازیافت کردند. سپس سرباره آنرا با چکش کاری جدا نموده و محتوی کربن را اکسیده  می کردند تا بدین طریق آهن نرم تولید کنند.

مردم خاورمیانه دریافتند که با حرارت دادن طولانی مدت آهن نرم درلایه ای از ذغال و آب دادن آن در آب یا روغن می توان محصولی بسیار محکم تر بدست آورد. محصول حاصله که دارای سطح فولادی است، از برنزی که قبلاً کاربرد داشت محکمتر و مقاوم تر بود. در چین نیز اولین بار آهن شهاب سنگی استفاده شد و اولین شواهد باستان شناسی برای اقلام ساخته شده با آهن نرم درشمال شرقی نزدیک xinjiang مربوط به قرن ۸ قبل از میلاد به دست آمده است. این وسایل از آهن نرم و با همان روش خاورمیانه و اروپا ساخته شده بودند و گمان می رفت که برای مردم غیر چینی هم ارسال می کردند.

درسالهای آخر پادشاهی سلسله ژو (حدود ۵۵۰ قبل از میلاد) به سبب پیشرفت زیاد تکنولوژی کوره، قابلیت تولید آهن جدیدی بوجود آمد. ساخت کوره های بلندی که توانایی حرارتهای بالای k 1300 را داشت، موجب تولید آهن خام یا چدن توسط چینی ها شد. اگر سنگ معدن آهن را با کربن k1470-1420  حرارت دهیم، مایع مذابی بدست می آید که آلیاژی با ۹۶٫۵% آهن و ۵۳٫۵% کربن است. این محصول محکم را می توان به شکلهای ریز و ظریفی درآورد. اما برای استفاده، بسیار شکننده می باشند، مگر آنکه بیشتر کربن آنرا از بین ببرند.

از زمان سلسله ژو به بعد اکثر تولیدات آهن درچین به شکل چدن است. با این همه آهن بعنوان یک محصول عادی که برای صدها سال مورد استفاده کشاورزان قرارگرفته است، باقی ماند و تا زمان سلسله شین (حدود ۲۲۱ قبل از میلاد) عظمت چین را واقعاً تحت تأثیر قرار ندارد.

توسعه چدن در اروپا عقب افتاد، چون کوره های ذوب در اروپا فقط توانایی K1000 را داشت، دربخش زیادی از قرون وسطی دراروپای غربی آهن اسفنجی به آهن نرم بدست می آورند. تعدادی از قالب گیریهای آهن دراروپا بین سالهای ۱۱۵۰ و ۱۳۵۰ بعد از میلاد در دو منطقه درسوئد به نامهای Lappyttan و Vinarhyttan انجام شد.

دانشمندان می پندارند شاید این روش بعد از این دو مکان تا مغولستان آن سوی روسیه ادامه یافته باشد، اما دلیلی محکمی برای اثبات این قضیه وجود ندارد. تا اواخر قرن نوزدهم درهر رویدادی یک بازار برای کالاهای چدنی بوجود آمد، مانند درخواست برای گلوله های توپ چدنی .

درآغاز برای ذوب آهن از زغال چوب هم بعنوان منبع حرارتی و هم عامل کاهنده استفاده می شد. درقرن ۱۸ در انگلستان تامین کنندگان چوب کم شدند و از زغال سنگ که یک سوخت فسیلی است، بعنوان منبع جانشین استفاده شد. این نوآوری بوسیله abraham darby انرژی لازم برای انقلاب صنعتی را تامین نمود.

 


دانلود با لینک مستقیم

پایان نامه بررسی عوامل موثر بر راندمان کوره های دوار سیمان از دیدگاه بهره برداری

اختصاصی از کوشا فایل پایان نامه بررسی عوامل موثر بر راندمان کوره های دوار سیمان از دیدگاه بهره برداری دانلود با لینک مستقیم و پرسرعت .

پایان نامه بررسی عوامل موثر بر راندمان کوره های دوار سیمان از دیدگاه بهره برداری


پایان نامه بررسی عوامل موثر بر راندمان کوره های دوار سیمان از دیدگاه بهره برداری

 

 

 

 

 

 

 

 

 



فرمت:word(قابل ویرایش)

تعداد صفحات:120

چکیده:

سیستم پخت سیمان مهمترین و اساسی‌ترین بخش یک واحد تولیدی سیمان می‌باشد، به طوریکه ظرفیت اسمی کارخانه‌های سیمان براساس میزان تولید روزانه(۲۴ ساعته) کوره بنا نهاده شده و ظرفیت دپارتمانها- تجهیزات و ماشین آلات- سیلوهای ذخیره مواد خام- کلینکر و سیمان نیز بر پایه ظرفیت تولید کوره طراحی و ساخته می‌شود.

لذا راندمان کوره یکی از پارامترهای مهم در بخش تولید بوده و تلاش در جهت به ظرفیت رساندن و سپس بالا بردن راندمان تولید کوره از مهمترین اهداف تیم مدیریتی و پرسنل فنی کارخانه‌های سیمان می‌باشد. در این پروژه سعی بر این است که پس از ارائه شناخت کلی از خط تولید سیمان دو فاکتور بسیار مهم و ارزشمند یعنی عوامل موثر بر راندمان کوره‌های دوار سیمان از دیدگاه بهره‌برداری و آنالیز شیمیائی خوراک کوره ارزیابی شده و مورد تاثیر هر کدام از دو عامل مذکور پس از شناخت موضوعات و مسائل مطروحه به بررسی مشکلات موجود پرداخته و راه‌حلهایی صحیح جهت برخورد با این گونه مسائل ارائه شود تا انشاءالله بدین وسیله هدف اصلی از ارائه این پروژه محقق شود.

فهرست مطالب:

عنوان                                                                                                              صفحه

چکیده……………………………………………………………………………………………………….. ۱

مقدمه……………………………………………………………………………………………………….. ۲

فصل۱: طرحی از یک کارخانه سیمان با تکنولوژی روز دنیا……………………………. ۴

فصل دوم: اجزاء سیستم پخت……………………………………………………………………. ۱۳

۱-۲- مشخصه‌هایی از کوره دوار سیمان…………………………………………………… ۱۴

۱-۱-۲- غلطک‌ها……………………………………………………………………………………… ۱۵

۲-۱-۲- غلطک بالابر………………………………………………………………………………… ۱۵

۳-۱-۲- سیستم چرخاننده کوره………………………………………………………………… ۱۶

۴-۱-۲- آب‌بندی سر و ته کوره………………………………………………………………… ۱۶

۲-۲- نسوزکاری کوره…………………………………………………………………………….. ۱۷

۳-۲- مشخصه‌هایی از پیش گرم‌کن…………………………………………………………… ۱۸

۴-۲- مسیر فرعی…………………………………………………………………………………….. ۲۰

۵-۲- سیستم تکلیس(Calciner)………………………………………………………………… 21

6-2- مشخصه‌هایی از خنک‌کن………………………………………………………………….. ۲۲

۷-۲- انواع خنک‌کنها…………………………………………………………………………………. ۲۴

۱-۷-۲- خنک‌کن مشبک……………………………………………………………………………. ۲۷

۸-۲- اتاق کنترل………………………………………………………………………………………. ۳۰

۹-۲- سوخت رسانی و مشعل…………………………………………………………………… ۳۰

۱-۹-۲- اصول سوختن و کنترل شعله……………………………………………………….. ۳۲

۲-۹-۲- شعله………………………………………………………………………………………….. ۳۳

۳-۹-۲- درجه حرارت شعله……………………………………………………………………… ۳۴

فصل ۳: پروژه…………………………………………………………………………………………. ۴۰

فصل ۴: شناخت متغیرهای کنترل سیستم پخت…………………………………………….. ۴۲

۱-۴- کنترل کوره…………………………………………………………………………………….. ۴۳

۲-۴- خنک کردن کلینکر……………………………………………………………………………. ۴۴

۳-۴- سوخت کوره………………………………………………………………………………….. ۴۵

۴-۴- تغذیه کوره…………………………………………………………………………………….. ۴۶

۵-۴- متغیرهای راهبری کوره…………………………………………………………………… ۴۶

۶-۴- مکانیک کوره…………………………………………………………………………………… ۴۸

۷-۴- شرایط خاص راهبری کوره……………………………………………………………… ۵۱

۱-۷-۴- کلیات…………………………………………………………………………………………. ۵۱

۲-۷-۴- تجزیه شیمیایی گاز خروجی کوره…………………………………………………. ۵۱

۳-۷-۴- حجم هوای اولیه…………………………………………………………………………. ۵۲

۴-۷-۴- درجه حرارت گاز خروجی پیش گرم‌کن…………………………………………. ۵۲

۵-۷-۴- درجه حرارت یاتاقانها………………………………………………………………….. ۵۲

۶-۷-۴- الکتروفیلترها………………………………………………………………………………. ۵۲

۷-۷-۴- گرفتگی سیکلونها…………………………………………………………………………. ۵۳

۸-۷-۴- گرفتگی در رایزر پایپ و ورودی کوره………………………………………….. ۵۳

۹-۷-۴- نسوزکاری کوره…………………………………………………………………………. ۵۳

۸-۴- چرخاندن کوره با موتور کمکی…………………………………………………………. ۵۴

۹-۴- تحلیل گزارشات ساعتی سیستم پخت…………………………………………………. ۵۴

فصل ۵: رعایت اصول کوره بانی……………………………………………………………….. ۵۹

۱-۵- مشخصه‌هایی از سیستم پخت…………………………………………………………… ۶۰

۱-۵-۱- جلو شعله…………………………………………………………………………………… ۶۰

۱-۵-۲- هوای ثانویه………………………………………………………………………………… ۶۳

۲-۵- کوره بان وکوتینگ(استر کوره)…………………………………………………………. ۶۵

۳-۵- عقب کوره………………………………………………………………………………………. ۶۸

۱-۳-۵- درجه حرارت عقب کوره……………………………………………………………… ۶۹

۲-۳-۵- مکش عقب کوره………………………………………………………………………….. ۷۱

۳-۳-۵- اکسیژن عقب کوره………………………………………………………………………. ۷۲

۴-۵- کنترل مقدار سوخت………………………………………………………………………… ۷۳

۵-۵- کنترل مقدار خوراک کوره و دور کوره……………………………………………… ۷۴

۶-۵- کنترل متغیرهای خنک کن گریت………………………………………………………… ۷۶

۱-۶-۵- کنترل مکش درب کوره………………………………………………………………… ۷۷

۲-۶-۵- فشار زیر صفحات خنک کن………………………………………………………….. ۷۸

۳-۶-۵- کنترل درجه حرارت هوای ثانویه………………………………………………….. ۷۸

۷-۵- بیست و هفت حالت اساسی کوره………………………………………………………. ۷۹

۱-۷-۵- سه متغیر و کنترل کننده اساسی…………………………………………………… ۸۱

۲-۷-۵- شرح بیست و هفت حالت- راه‌حلها و دلایل…………………………………….. ۸۵

۳-۷-۵- حالات اضطراری………………………………………………………………………… ۹۲

فصل ۶: اولین گرم کردن سیستم پخت……………………………………………………… ۱۰۲

۱-۶- خشک کردن پیش گرم‌کن……………………………………………………………….. ۱۰۳

۲-۶- خشک کردن درب کوره و کانال هوای سوم و خنک کن…………………….. ۱۰۶

۱-۲-۶- مشعل کمکی برای خشک کردن درب کوره…………………………………… ۱۰۸

۲-۲-۶- مشعل کمکی برای خشک کردن کانال هوای سوم…………………………. ۱۰۸

۳-۲-۶- مشعل کمکی برای خشک کردن خنک کن……………………………………… ۱۰۸

۳-۶- گرم کردن کوره دوار……………………………………………………………………. ۱۱۳

۱-۳-۶- آماده سازی……………………………………………………………………………… ۱۱۳

۲-۳-۶- گرم کردن تمام سیستم پخت………………………………………………………. ۱۱۳

۳-۳-۶- کنترل درجه حرارت………………………………………………………………….. ۱۱۵

۴-۳-۶- چرخاندن کوره در مرحله گرم کردن………………………………………….. ۱۱۶

۵-۳-۶- وقفه در گرم کردن……………………………………………………………………. ۱۱۶

۴-۶- خواباندن کوره……………………………………………………………………………… ۱۱۷

۵-۶- نکات مهم……………………………………………………………………………………… ۱۱۷

فصل ۷: اولین راه‌اندازی سیستم پخت………………………………………………………. ۱۱۹

۱-۷- اولین باردهی کوره……………………………………………………………………….. ۱۲۰

۲-۷- مقدمات تغذیه کوره……………………………………………………………………….. ۱۲۰

۳-۷- راه‌اندازی موتور کوره…………………………………………………………………… ۱۲۰

۴-۷- فراهم کردن شرایط تولید عادی……………………………………………………… ۱۲۱

۵-۷- راه‌اندازی خنک کن………………………………………………………………………… ۱۲۲

۶-۷- آماده شدن برای راه‌اندازی کلساینر………………………………………………… ۱۲۵

۷-۷- رسیدن به باردهی عادی………………………………………………………………… ۱۲۵

۸-۷- حالات غیرعادی خنک کن……………………………………………………………….. ۱۲۶

فصل ۸: گرفتگی‌های سیستم پخت…………………………………………………………….. ۱۳۰

۱-۸- قلیائی‌ها………………………………………………………………………………………… ۱۳۱

۲-۸- پاک کردن پیش گرم‌کن………………………………………………………………….. ۱۳۴

۳-۸- عوامل گرفتگی عقب کوره………………………………………………………………. ۱۳۴

۱-۳-۸- توازن چسبندگی و فرسایش……………………………………………………….. ۱۳۴

۲-۳-۸- چسبندگی چیست؟……………………………………………………………………… ۱۳۶

۳-۳-۸- چسبندگی جامد به جامد…………………………………………………………….. ۱۳۷

۴-۳-۸- جذب سطحی…………………………………………………………………………….. ۱۳۷

۵-۳-۸- نتیجه‌گیری……………………………………………………………………………….. ۱۳۸

۴-۸- ماهیت جرم گرفتگی عقب کوره……………………………………………………….. ۱۳۸

۱-۴-۸- مشخصات ظاهری گرفتگی…………………………………………………………. ۱۳۸

۲-۴-۸- ترکیب شیمیایی…………………………………………………………………………. ۱۳۸

۳-۴-۸- ترکیب مینرالوژیکی……………………………………………………………………. ۱۴۴

۴-۴-۸- مکانیزم تشکیل………………………………………………………………………….. ۱۴۴

۵-۸- عوارض گرفتگی عقب کوره……………………………………………………………. ۱۴۵

۱-۵-۸- عقب کوره………………………………………………………………………………… ۱۴۵

۲-۵-۸- عوارض گرفتگی………………………………………………………………………… ۱۴۷

فصل ۹: نسوزکاری سیستم پخت سیمان…………………………………………………… ۱۴۹

۱-۹- مواد نسوز در نقاط مختلف سیستم پخت………………………………………….. ۱۵۰

فصل ۱۰: فرسایش مواد نسوز در سیستم پخت…………………………………………. ۱۶۰

۱-۱۰- مقدمه………………………………………………………………………………………… ۱۶۱

۲-۱۰- عوامل مختلف فرسایش آجر منطقه پخت………………………………………… ۱۶۲

۱-۲-۱۰- زیاد داغ شدن آجر………………………………………………………………….. ۱۶۳

۲-۲-۱۰- نفوذ املاح قلیائی……………………………………………………………………… ۱۶۷

۳-۲-۱۰- فرسایش ناشی از احیاء……………………………………………………………. ۱۷۲

۴-۲-۱۰- فرسایش مکانیکی…………………………………………………………………….. ۱۷۵

۳-۱۰- سیکل قلیائی در سیستم پخت سیمان……………………………………………… ۱۸۰

۴-۱۰- شکفتگی قلیائی…………………………………………………………………………….. ۱۸۳

۵-۱۰- فرسایش بدنه کوره……………………………………………………………………… ۱۸۵

فصل ۱۱: رعایت نکات ایمنی سیستم پخت…………………………………………………. ۱۸۶

۱-۱۱- کوره………………………………………………………………………………………….. ۱۸۷

۲-۱۱- سیکلونها…………………………………………………………………………………….. ۱۸۷

۳-۱۱- الکتروفیلتر………………………………………………………………………………….. ۱۸۸

فصل ۱۲: عوامل موثر بر راندمان کوره‌های دوار سیمان از دیدگاه آنالیز شیمیایی خوراک کوره  ۱۹۱

۱-۱۲- مقدمه………………………………………………………………………………………… ۱۹۲

۱-۱-۱۲- مسئولیت آزمایشگاه کارخانه سیمان………………………………………….. ۱۹۲

۲-۱-۱۲- سیمان……………………………………………………………………………………. ۱۹۲

۲-۱۲- مشخصات شیمیائی و فیزیکی سیمان…………………………………………….. ۱۹۵

۱-۲-۱۲- آلیت………………………………………………………………………………………. ۱۹۶

۲-۲-۱۲- بلیت……………………………………………………………………………………….. ۱۹۸

۳-۲-۱۲- فاز الومینات……………………………………………………………………………. ۱۹۸

۴-۲-۱۲- فاز فریت………………………………………………………………………………… ۱۹۸

۵-۲-۱۲- ترکیبات فرعی…………………………………………………………………………. ۱۹۸

۶-۲-۱۲- سنگ گچ…………………………………………………………………………………. ۲۰۲

۳-۱۲- محاسبه فازهای سیمان………………………………………………………………… ۲۰۳

۴-۱۲- مشخصات از انواع سیمان……………………………………………………………. ۲۰۳

۵-۱۲- چگونگی پخت مواد………………………………………………………………………. ۲۰۶

۱-۵-۱۲- فعل و انفعالات مواد در پیش گرمکن…………………………………………. ۲۰۶

۲-۵-۱۲- فعل و انفعالات مواد در داخل کوره…………………………………………… ۲۰۸

۶-۱۲- عوامل موثر در پختن مواد……………………………………………………………. ۲۱۱

۱-۶-۱۲- ترکیب شیمیایی مواد اولیه………………………………………………………… ۲۱۱

۲-۶-۱۲- ترکیب مینرالی مواد اولیه و خوراک کوره………………………………….. ۲۱۷

۳-۶-۱۲- دانه‌بندی خوراک کوره…………………………………………………………….. ۲۱۸

۴-۶-۱۲- همگن بودن مواد خام………………………………………………………………. ۲۱۸

۵-۶-۱۲- شرایط پخت……………………………………………………………………………. ۲۱۹

۷-۱۲- میکروسکوپی کلینکر…………………………………………………………………….. ۲۱۹

۱-۷-۱۲- کلینکر نرمال…………………………………………………………………………… ۲۱۹

۲-۷-۱۲- کلینکر آهسته خنک شده…………………………………………………………… ۲۱۹

۸-۱۲- مراحل فیزیکی و شیمیائی مواد در حین پخت………………………………….. ۲۲۳

۱-۸-۱۲- خشک شدن…………………………………………………………………………….. ۲۲۳

۲-۸-۱۲- دهیدراته شدن مواد رسی………………………………………………………… ۲۲۳

۳-۸-۱۲- تجزیه کربناتها………………………………………………………………………… ۲۲۳

۴-۸-۱۲- واکنش‌های جامد…………………………………………………………………….. ۲۲۳

۵-۸-۱۲- واکنش‌هایی که در حضور فاز مایع رخ می‌دهد…………………………… ۲۲۴

۹-۱۲- تاثیر نوسانات کیفیت خوراک کوره بر راندمان کوره……………………….. ۲۲۴

۱۰-۱۲- اقدامات موردنیاز در جهت کاهش نوسان کیفیت خوراک کوره……….. ۲۲۶

۱-۱۰-۱۲- تدوین استراتژی نمونه‌گیری…………………………………………………… ۲۲۶

۲-۱۰-۱۲- مطالعات تفصیلی معادن…………………………………………………………. ۲۲۷

۳-۱۰-۱۲- جلوگیری از عوامل نوسان کاذب در سیستم کنترل کیفی……………. ۲۲۷

منابع و مراجع……………………………………………………………………………………….. ۲۲۹

چکیده انگلیسی ………………………………………………………………………………………. ۲۳۰


فهرست اشکال

عنوان                                                                                                            صفحه

۱-۱- فلودیاگرام خط تولید سیمان……………………………………………………………….. ۶

۲-۱- مشخصات پخت سیمان………………………………………………………………………. ۷

۳-۱- خط تولید سیمان به روش خشک………………………………………………………. ۱۰

۴-۱- سیستم پخت سیمان…………………………………………………………………………. ۱۱

۵-۱- سیستم پخت سیمان با سیکلون ۵ مرحله‌ای………………………………………… ۱۲

۱-۲- کوره دوار سیمان……………………………………………………………………………. ۱۴

۲-۲- بدنه کوره………………………………………………………………………………………. ۱۵

۳-۲- غلطک مستقر روی پایه‌های کوره سیمان……………………………………………. ۱۵

۴-۲- سیستم حرکت کوره………………………………………………………………………… ۱۶

۵-۲- نسوزکاری بخشهایی از سیستم پخت………………………………………………… ۱۷

۷-۲- تغییرات حرارت ویژه مصرفی نسبت به ظرفیت کوره………………………….. ۲۰

۸-۲- نمونه‌ای از طرح مسیر فرعی…………………………………………………………….. ۲۱

۱۱-۲- خنک کن دوار به همراه کوره دارای کلساینر طرح همبولت…………………. ۲۶

۱۲-۲- خنک کن سیاره‌ای…………………………………………………………………………. ۲۶

۱۳-۲- خنک کن مشبک…………………………………………………………………………….. ۲۸

۱۴-۲- اتاق کنترل سیمان اکباتان……………………………………………………………….. ۳۰

۱۵-۲- مقطع انتهای خروجی کوره سیمان………………………………………………….. ۳۴

۲۴-۲- یکی از آخرین طرحهای مشعل و موقعیت آن در سیستم پخت سیمان….. ۳۹

۱-۴- محاسبه مقدار هوای نشتی در بخشهای مختلف سیستم پخت و آسیاب مواد ۵۰

۲-۴- نقاط سنجش متغیرهای مختلف سیستم پخت………………………………………. ۵۵

۳-۴- نقاط سنجش متغیرهای مختلف خنک کن کلینکر…………………………………… ۵۶

۴-۴- گزارش ساعتی کارکرد کوره سیمان هگمتان……………………………………… ۵۷

۵-۴- گزارش ساعتی کارکرد خنک کن کلینکر سیمان هگمتان……………………….. ۵۸

۱-۵- موقعیت نقطه تاریک نسبت به شعله……………………………………………………. ۶۱

۲-۵- جهت انتقال حرارت از مرکز کوره به بدنه………………………………………….. ۶۴

۳-۵- حالات مختلف منطقه پخت…………………………………………………………………. ۶۵

۱-۶- محل تعبیه حرارت سنج‌ها در نقاط مختلف پیش گرمکن……………………… ۱۰۵

۲-۶- چگونگی تعبیه سوراخهایی در سقف سیکلونها برای خروج بخار آب……. ۱۰۷

۳-۶- محل تعبیه مشعل برای خشک و گرم کردن کانال هوای سوم…………….. ۱۰۹

۴-۶- محل تعبیه برای خشک و گرم کردن درب کوره……………………………….. ۱۱۰

۵-۶- مشعل کمکی برای خشک کردن خنک کن………………………………………….. ۱۱۱

۱-۷- موتور کوره………………………………………………………………………………….. ۱۲۱

۳-۸- جریان گاز و مواد…………………………………………………………………………. ۱۳۶

۴-۸- جریان گاز و مواد…………………………………………………………………………. ۱۳۶

۵-۸- گرفتگی‌های سیستم پخت………………………………………………………………… ۱۴۶

۱-۹- تغییرات درجه حرارت در بخشهای مختلف سیستم پخت……………………. ۱۵۱

۲-۹- نسوزکاری قسمتهای مختلف سیستم پخت………………………………………… ۱۵۳

۳-۹- جنس مواد نسوز مورد استفاده در قسمتهای مختلف سیستم پخت………. ۱۵۴

۴-۹- سیکلون پایین پیش گرمکن و نسوزکاری سقف…………………………………. ۱۵۶

۵-۹- انتهای پیش گرمکن و ورودی…………………………………………………………. ۱۵۶

۶-۹- مناطق مختلف ابتدا تا انتهای کوره…………………………………………………… ۱۵۷

۱-۱۰- عوامل فرسایش مختلف شیمیایی- مکانیکی و حرارتی موثر روی آجر.. ۱۶۲

۲-۱۰- الی ۲۴-۱۰- اشکال مختلف آجرهای کوره که دچار فرسایش شده‌اند صفحه ۱۶۴الی صفحه۱۸۰

۲۵-۱۰- سیکل کلر در سیستم پخت………………………………………………………….. ۱۸۱

۲۶-۱۰- سیکل قلیائی در سیستم پخت………………………………………………………. ۱۸۲

۲۷-۱۰- سیکل سولفور در سیستم پخت…………………………………………………… ۱۸۲

۲۸-۱۰- شکفتگی قلیائی…………………………………………………………………………… ۱۸۴

۳۰-۱۰- فرسایش بدنه کوره…………………………………………………………………… ۱۸۵

۱-۱۲- دیاگرام سه تائی نشان‌دهنده ترکیبات اکسیدی و مینرالی سیمان پرتلند و موقعیت آن در مقایسه با سایر مصالح و مواد معدنی……………………………………………………………………………… ۱۹۳

۲-۱۲- تقسیم‌بندی مناطق مختلف کوره…………………………………………………….. ۲۰۷

۳-۱۲- تغییرات شیمیائی و حرارتی خوراک کوره از ورود به سیستم پخت تا خروج از آن ۲۱۰

۴-۱۲- بلورهای کلینکر عادی………………………………………………………………….. ۲۲۱

۵-۱۲- بلورهای کلینکر آهسته خنک شده………………………………………………….. ۲۲۱

۶-۱۲- توده بلورهای آهک آزاد که توسط الیتها احاطه شده‌اند……………………. ۲۲۱

۸-۱۲- کلینگر آزمایشگاهی با سولفات زیاد……………………………………………….. ۲۲۲


فهرست جداول

عنوان                                                                                                ………….. صفحه

۱-۲- موازنه حرارتی پیش گرمکن اس- اف………………………………………………… ۲۲

۲-۳- موازنه حرارتی خنک کن فولر دارای اندازه‌های ۱۰۵۰/۸۲۵………………….. ۲۹

۳-۲- مشخصات فیزیکی شیمیایی انواع سوخت(مأخذ: المان)…………………………. ۳۱

۴-۲- مشخصات نفت کوره پالایشگاهی ایران……………………………………………… ۳۲

۱-۴- مشخصه‌ای از سوختهای مصرفی در کوره سیمان…………………………….. ۴۶

۱-۵- شرح بیست و هفت حالت اساسی- راه‌حلها و دلایل……………………………… ۸۵

۱-۸- مشخصات ظاهری و شیمیایی جرم گرفتگی‌های عقب تعدادی از کوره‌های متعلق به کمپانی holcim         ۱۴۰

۲-۸- آنالیز شیمیایی نمونه‌هایی از سیلکون ۴……………………………………………. ۱۴۲

۳-۸- آنالیز شیمیایی نمونه‌های از کوتینگ‌های مزاحم رایز پایپ ورودی کوره ۱۴۳

۱-۹- چرا سیستم پخت سیمان را نسوزکاری می‌کنیم؟………………………………. ۱۵۲

۲۹-۱۰- واکنش‌های مرتبط با ترکیب Na20 و مولایت موجود در آجر آلومینیومی و ترکیبات آلومینو سیلیکات موجود در آجر شاموتی………………………………………………………………………….. ۱۸۴

۱-۱۲- ترکیب شیمیایی مواد اولیه کارخانجات سیمان ایران………………………… ۱۹۴

۲-۱۲- علائم اختصاری برای اجزاء تشکیل دهنده سیمان…………………………… ۱۹۷

۳-۱۲- ترکیب شیمیائی فازهای یک نمونه کلینگر سیمان پرتلند(برحسب درصد وزنی)       ۲۰۰

۴-۱۲- فازهای کلینکر و مشخصات آنها(درصدها وزنی است)……………………. ۲۰۱

۵-۱۲- انواع سیمان پرتلند براساس تقسیم‌بندی انجمن سیمان اروپا…………….. ۲۰۴

۶-۱۲- استانداردهای آمریکا(ASTM-C 150) برای سیمان………………………. ۲۰۵

۷-۱۲- خلاصه عملیات شیمیائی- حرارتی و نام مناطق کوره………………………. ۲۰۹

۸-۱۲- روابط و نسبت مدولهای مورد استفاده برای تنظیم مواد و پختن کلینکر ۲۱۳

۹-۱۲- نمونه‌ای از مشخصات سنگ آهک- خاک رس و کلینکر……………………. ۲۱۴


فهرست منحنی‌ها و نمودارها

عنوان                                                                                                 صفحه

۷-۲- منحنی تغییرات حرارت ویژه مصرفی نسبت به ظرفیت کوره………………… ۲۰

۹-۲- منحنی قابلیت خرد شدن کلینکر و ارتباط آن با نحوه سرد کردن…………… ۲۴

۱۰-۲- منحنی درصد انبساط کلینکر و ارتباط آن با چگونگی سرد شدن………… ۲۴

۱۶-۲- منحنی تغییرات درجه حرارت و طول شعله نسبت به نوع سوخت………… ۳۵

۱۷-۲- منحنی اثر نسبت هوا روی درجه حرارت شعله…………………………………. ۳۵

۱۸-۲- منحنی طول نسبی شعله به صورت تابعی از نسبت هوا……………………… ۳۶

۱۹-۲- منحنی رابطه بین نسبت هوا و فاصله نقطه حداکثر حرارت شعله تا سرمشعل        ۳۶

۲۰-۲- منحنی تغییرات درجه حرارت نسبی شعله- نسبت هوای اولیه به ثانویه.. ۳۷

۲۱-۲- نمودار تغییرات درجه حرارت شعله- درصد هوای اضافی- درجه حرارت هوای ثانویه برای سوخت      ۳۷

۲۲-۲- اثر سرعت جریان سوخت روی

اشتراک بگذارید:


پرداخت اینترنتی - دانلود سریع - اطمینان از خرید

پرداخت و دانلود

مبلغ قابل پرداخت 9,600 تومان
(شامل 20% تخفیف)
مبلغ بدون تخفیف: 12,000 تومان
عملیات پرداخت با همکاری بانک انجام می شود

درصورتیکه برای خرید اینترنتی نیاز به راهنمایی دارید اینجا کلیک کنید


فایل هایی که پس از پرداخت می توانید دانلود کنید

نام فایل حجم فایل
randeman-kore_215703_5541.zip 7 MB





پایان نامه رئولوژی مواد پلیمری

پایان نامه رئولوژی مواد پلیمری                       فرمت:word(قابل ویرایش)تعداد صفحات:107   چکیده: در این پروژه ابتدا رئولوژی مواد پلیمری مورد بررسی قرار گرفته است. در ادامه آمیزه‌های پلیمری و روشهای تهیه این ترکیبات بیان و همچنین به بحث پیرامون شرایط سازگاری و امتزاج- پذیری و کریستالیزاسیون این نوع مواد پرداخته شده است. رئولوژی آمیزه‌های پلیمری و معادلا ...

توضیحات بیشتر - دانلود 8,000 تومان 6,400 تومان 20% تخفیف

پایان نامه تجزیه و تحلیل رفتار ویسکوالاستیک آمیزه های پلیمری

پایان نامه تجزیه و تحلیل رفتار ویسکوالاستیک آمیزه های پلیمری               فرمت:word(قابل ویرایش)تعداد صفحات:102   فهرست مطالب: فصل اوّل  رئولوژی (Rheology) 11 تاریخچه پیدایش رئولوژی ۱۲ مواد از دیدگاه رئولوژی ۱۲۱ پدیده‌های رئولوژیکی ۱۲۲ تنش تسلیم در جامدات ۱۲۳ تنش تسلیم در رئولوژی  ۱۲۴ تقسیم‌بندی مواد طبقه‌بندی سیالات فصل دوّم   آمیزه‌های پلیمری  (Polymer Blends) ...

توضیحات بیشتر - دانلود 18,000 تومان 12,600 تومان 30% تخفیف

پایان نامه مولکول نگاری پلیمری سنتز و کاربرد آن در استخراج

 پایان نامه مولکول نگاری پلیمری سنتز و کاربرد آن در استخراج                   فرمت:word(قابل ویرایش)تعداد صفحات:266 مقدمه: مفهوم برهم کنش مولکولی بسیار قدیمی بوده و بوسیله مؤسسات یونانی و ایتالیایی استفاده شده است. در نیمه دوم قرن نوزدهم، ظهور نظریه‌های مدرن در مورد این برهم کنش‌ها از میان آزمایش‌های واندروالس در مطالعاتش پیرامون برهم کنش‌های مابین اتمها در حالت گازی آغاز شد و در سال 1894، ...

توضیحات بیشتر - دانلود 18,000 تومان 14,400 تومان 20% تخفیف

پایان نامه تغییرات محتوای آمینواسیدهای آزاد، ترکیبات فنلی و ترکیبات ایمیدازولی در دانه های در حال رویش سویا

پایان نامه تغییرات محتوای آمینواسیدهای آزاد، ترکیبات فنلی و ترکیبات ایمیدازولی در دانه های در حال رویش سویا                   فرمت:word(قابل ویرایش)تعداد صفحات:123 عنوان:پایان نامه تغییرات محتوای آمینواسیدهای آزاد، ترکیبات فنلی و ترکیبات ایمیدازولی در دانه های در حال رویش سویا (Glycine max L. cv. Pershing) تحت اثر تنش شوری اسمزی و ژیبرلین پایان نامه کارشناسی ارشد علوم گیاهی(M.S )   اهداف پژوهش اهداف پژوهش حاضر را میتوان شامل چند محور عمده دانست . &nda ...

توضیحات بیشتر - دانلود 11,000 تومان 8,800 تومان 20% تخفیف

فروش بزرگترین آرشیو پایان نامه روی هارد + هدیه + ارسال رایگان

  قابل توجه کافی نت ها،دفاتر فنی، فروشگاه داران اینترنتی و دانشجویان و …. برای اولین بار ... بیش از 600 گیگابایت پایان نامه+پروژه + مقاله+تحقیق +طرح توجیهی + کارآموزی برای تمامی رشته ها همراه با انواع جزوات و نمونه سوالات و پرسشنامه خرید محموعه بزرگ پایان نامه های رشته خودتان هم برای نگارش پایان نامه ، مقاله و… و هم می تواند به عنوان یک مخزن علمی بزرگ که محتویاتش در ای ...

توضیحات بیشتر - دانلود 500 تومان 100 تومان 80% تخفیف

دانلود با لینک مستقیم

دانلود مقاله کوره آفتابی

اختصاصی از کوشا فایل دانلود مقاله کوره آفتابی دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله کوره آفتابی


دانلود مقاله کوره آفتابی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:13

فهرست مطالب

 

مقدمه

کوره آفتابی وسیله‌ای است برای تولید گرما بوسیله تجمع و تمرکز نور خورشید در یک نقطه خاص و استفاده از حرارت آن نقطه برای تولید آب گرم و بخار آب گرم. کوره آفتابی به شکل بشقاب کاو (مقعر) و آینه‌ای و صیقلی (که نورهای تابیده شده به طرف خود را بازتاب می‌کند) است. نورهای تابیده شده از بی نهایت دور موازی هستند، بنابراین همه آنها بعد از بازتابش نقطه خاصی به نام کانون می‌گذرند. برای ورود به بحث با چند اصطلاح آشنا می‌شویم.

  1. مرکز آینه (C): نقطه‌ای است که فاصله تمام نقاط سطح از آن نقطه ثابت است.
  2. کانون (F): نصف فاصله سطح تا مرکز را کانون می‌نامند و فاصله و سطح بشقاب (رأس آینه) تا کانون فاصله کانونی (f) نامیده می‌شود.
  3. محور اصلی: خطی فرضی که وسط (رأس) بشقاب را به مرکز وصل کرده و کانون روی آن نیز کانون اصلی نامیده می‌شود.

 

پرتو نورهای تابیده شده نسبت به محور اصلی در بازتاب تقارن آینه‌ای دارند. پرتو نورهایی که موازی محور اصلی بتابد حتما بازتاب آنها از کانون می‌گذرد (کانون اصلی) ، پس در آن نقطه حرارت و گرما بسیار بالاتر از اطراف است. پس اگر منبع آب در آن نقطه قرار داده شود آب در اثر انرژی دریافتی از خورشید بسیار گرم خواهد شد و این اساس یک کوره آفتابی است.


دانلود با لینک مستقیم

طراحی سیستم هوشمند کنترل سوخت و هوا و متوسط دما در کوره با روش کنترل فازی

اختصاصی از کوشا فایل طراحی سیستم هوشمند کنترل سوخت و هوا و متوسط دما در کوره با روش کنترل فازی دانلود با لینک مستقیم و پرسرعت .

طراحی سیستم هوشمند کنترل سوخت و هوا و متوسط دما در کوره با روش کنترل فازی


طراحی سیستم هوشمند کنترل سوخت و هوا و متوسط دما در کوره با روش کنترل فازی

چکیده:

با توجه به اهمیت موضوع مصرف سوخت در کوره ها، که یکی از انرژی برترین بخش ها در یک واحد صنعتی، بخصوص در پالایشگاه ها و نیروگاه ها می باشند. طراحی یک سیستم کنترل هوشمند که با توجه به حرارت مورد نیاز در کوره میزان سوخت و هوای اضافی را کنترل نماید بسیار حائز اهمیت است. در پالایشگاه شیراز محاسبه میزان سوخت و هوای اضافه بر مبنای محاسبه مقدار اولیه سوخت در نقطه کار می باشد. به این صورت که با فرض اولیه مقدار سوخت، مقدار ثابت سوخت به کوره تزریق می شود و کنترل دمای خروجی با استفاده از تغییر هوای اضافی صورت می گیرد. سیستم کنترل کوره های موجود دستی و توسط اپراتور شکل گرفته است که موجب می شود تا در برخی موارد هوای اضافی مصرفی در کوره تا بیش از 200 درصد افزایش یابد که این امر باعث مصرف سوخت بیش از حد لازم می شود. به همین منظور در این پروژه، بررسی روش کنترل هوشمند در کوره ها و طراحی یک سیستم مناسب برای کوره مورد نظر، که در اینجا کوره مورد نظر کوره اصلی نفت خام در پالایشگاه شیراز (H-101A) می باشد، هدف کار قرار گرفته است.

مسأله دیگری که در کوره (H – 101A) پالایشگاه نفت شیراز حائز اهمیت است، مسأله عدم قطعیت در تعیین ارزش حرارتی سوخت کوره، به دلیل متغیر بودن ترکیبات سوخت می باشد که این مسأله نیز در این پروژه توسط منطق فازی مورد تحلیل و بررسی قرار گرفته است.

 

فرمت PDF

تعداد صفحات 167

 


دانلود با لینک مستقیم